0

$$\begin{align} \sum_{i=0}^{n-1}ia^i &= 0 + a + 2a^2 + \cdots + (n-1)a^{n-1}\\ &= \frac{a - na^n + (n-1)a^{n+1}}{(1 - a)^2} \end{align}$$

Is there any formula for a slightly similar one?

$$ \sum_{i=0}^{n-1}ia^{n-1-i} = 0 + a^{n-2} + 2a^{n-3} + \cdots + (n-1) $$

As Calvin Lin suggestion:

$$\begin{align} \sum_{i=0}^{n-1}ia^{n-1-i} &= \sum_{i=0}^{n-1}ia^{n-1}\left(\frac{1}{a}\right)^i = a^{n-1}\sum_{i=0}^{n-1}i\left(\frac{1}{a}\right)^i \\ &= a^{n-1}\frac{\frac1a - n\left(\frac1a\right)^n + (n-1)\left(\frac1a\right)^{n+1}}{(1 - \frac1a)^2}\\ &= \cdots \end{align}$$

user34295
  • 735

1 Answers1

3

Hint: $a^{n-1 - i} = a^{n-1} \times (\frac {1}{a} )^i$.

Now apply your initial claim.

Calvin Lin
  • 68,864