$$\begin{align} \sum_{i=0}^{n-1}ia^i &= 0 + a + 2a^2 + \cdots + (n-1)a^{n-1}\\ &= \frac{a - na^n + (n-1)a^{n+1}}{(1 - a)^2} \end{align}$$
Is there any formula for a slightly similar one?
$$ \sum_{i=0}^{n-1}ia^{n-1-i} = 0 + a^{n-2} + 2a^{n-3} + \cdots + (n-1) $$
As Calvin Lin suggestion:
$$\begin{align} \sum_{i=0}^{n-1}ia^{n-1-i} &= \sum_{i=0}^{n-1}ia^{n-1}\left(\frac{1}{a}\right)^i = a^{n-1}\sum_{i=0}^{n-1}i\left(\frac{1}{a}\right)^i \\ &= a^{n-1}\frac{\frac1a - n\left(\frac1a\right)^n + (n-1)\left(\frac1a\right)^{n+1}}{(1 - \frac1a)^2}\\ &= \cdots \end{align}$$