What are the steps to convert $3.2\overline{901234567}$ to an improper fraction?
Asked
Active
Viewed 63 times
0
-
Welcome to Mathematics Stack Exchange. Note $901234567/999999999=73/81=0.\overline{901234567}$ – J. W. Tanner Sep 26 '19 at 02:02
-
It's $533/162$. – J. W. Tanner Sep 26 '19 at 02:13
-
1Thank you for the welcome! 533/162 is the answer I am looking for. I think I can figure out how you got it. Thanks! – David_M Sep 26 '19 at 02:43
3 Answers
1
$$x = 3.2\overline{901234567}$$
$$10^9 x = 3290123456.7\overline{901234567}$$
$$(10^9 - 1)x = 329123453.5$$
so
$$x = \frac{3290123453.5}{999999999}$$

J. W. Tanner
- 60,406

David G. Stork
- 29,774
0
$3.2\overline{901234567}=\dfrac{32}{10}+\dfrac{901234567}{9999999990}=\dfrac{32}{10}+\dfrac{73}{810}.$ Can you take it from here?

J. W. Tanner
- 60,406
-
Your second fraction is off by a factor of $10$. The denominator should be $9999999990$. – kccu Sep 26 '19 at 02:11
-
0
You can re-write this repeating decimal using a infinite geometric series: \begin{align*} 3.2\overline{901234567} &= 3.2+901234567(10^{-10}+10^{-19}+10^{-28}+\cdots)\\ &=3.2 + 901234567\cdot 10^{-10}\sum_{k=0}^\infty (10^{-9})^k\\ &=3.2 + 901234567\cdot \frac{1}{10^{10}}\frac{1}{1-10^{-9}}\\ &=\frac{32}{10}+\frac{901234567}{10^{10}-10} \end{align*} and now you can find a common denominator and add these fractions.

kccu
- 20,808
- 1
- 22
- 41