0

Show $1-1/x <\ln(x) <x-1$ for all $x>1$?

My attempt:

(1) $\ln (x)<x-1$

Suppose $h: \mathbb{R}^+ \to \mathbb{R}, t\mapsto t-1-\ln(t)$, then $h'(t)=0$ if $t=1$. Furthermore $h'(t)>0$ for all $t\in \mathbb{R}^+$.

(2) $1-1/x<\ln(x)$

Suppose $f: \mathbb{R}^+\to \mathbb{R}, t\mapsto \ln(t)-1+\frac{1}{t}$, then $f'(t)=0$ for $t=1$ and $f'(t)>0$ for all $t\in \mathbb{R}^+$.

Therefore the inequality is true.

Analysis
  • 2,450
  • 2
    What is the question? – See also https://math.stackexchange.com/q/324345/42969, https://math.stackexchange.com/q/1161278/42969, https://math.stackexchange.com/q/551858/42969, https://math.stackexchange.com/q/1222872/42969 – Martin R Sep 24 '19 at 17:35
  • Is it possible to prove it like i did? – Analysis Sep 24 '19 at 17:36
  • 1
    It surely is. Did you compute the derivatives? Can you show that they are positive? If not, what is the problem? – You'll find many similar solutions in the above-mentioned Q&As. – Martin R Sep 24 '19 at 17:38
  • The sample solution uses the mean value theorem... – Analysis Sep 24 '19 at 17:39
  • 1
    This answer https://math.stackexchange.com/a/1161290/42969 uses the derivative, and this as well: https://math.stackexchange.com/a/1419099/42969. – Martin R Sep 24 '19 at 17:40

2 Answers2

3

$\forall t> 1, \,\, \dfrac1{t^2}<\dfrac1t<1$ thus for $x>1$ we have : $$\,\,\int_1^x\dfrac{dt}{t^2}<\int_1^x\dfrac{dt}{t}<\int_1^xdt$$

DINEDINE
  • 6,081
1

Let $$f(x)=x-1-\ln(x)$$ then $$f'(x)=1-\frac{1}{x}=\frac{x-1}{x}>0$$ for $x>1$ and $$f(1)=0$$ so $f(x)$ is strictly monotonously increasing .

ViktorStein
  • 4,838