I wonder why $E|X|=\int_{0}^{\infty} P[|X|>t] dt$. X is a positive random variable with density $f_X$
What I have done so far $$\int_{0}^{\infty} P[|X|>t] dt = \int_{0}^{\infty} \int_{t}^{\infty} f_X (y) dy dt = \int_{0}^{\infty} \int_{0}^{y} f_X (y) dt dy $$
From there, I am not sure how to proceed.
Thanks in advance!