Prove that the following operator is bounded on $L^{2}(0, \infty)$:
$Af(x)$ = $\frac{1}{\pi} \int_{0}^{\infty} \frac{f(y)}{x+y}dy$
with $||A|| \le 1$.
Attempt at Solution
It can be shown that:
$\int_{0}^{\infty} \frac{|f(y)|}{|x+y|}dy \le [\omega(x)\int_{0}^{\infty} \frac{|f(y)|^{2}}{|x+y|}\omega(y)^{-1}dy]^{\frac{1}{2}}$
I am trying to show that:
$\int_{0}^{\infty}\frac{1}{\pi}\omega(x)\int_{0}^{\infty} \frac{|f(y)|^{2}}{|x+y|}\omega(y)^{-1}dy = \frac{1}{\pi}\int_{0}^{\infty} \frac{1}{(1+y)y^{\frac{1}{2}}}\int_{0}^{\infty}|f(y)|^{2} = \int_{0}^{\infty}|f(y)|^{2}$
I can't seem to find a suitable choice of $\omega(x)$ such that result holds.