If $a_n\to a\in\mathbb{R}$ then $\frac{a_1+\cdots + a_n}{n}\to a$
I start by proving the case $a_n\to 0$ then I know how to generalize to the case $a\in\mathbb{R}$ (my aim here is more to be sure that this type of reasoning below is correct, rather than answering this especific question).
Given $\epsilon>0$ choose $N$ such that $n>N \implies |a_n|<\epsilon /2$. After that $N$ chosen, choose $N_0$ such that $N_0 > \frac{2|a_1 + \cdots + a_N|}{\epsilon}$.
Then $n > \max\{N, N_0\}$ implies $$ \left|\frac{a_1 + \cdots + a_n}{n}\right| \le \left|\frac{a_1 + \cdots + a_N}{n}\right| + \left|\frac{a_{N+1} + \cdots + a_n}{n}\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon $$ Then $\left|\frac{a_1 + \cdots + a_n}{n}\right|\to 0$
Is this correct? Thanks in advance.