Let $O=\{(x,y) \in \mathbb R^2: x,y>0, x+y<\frac{\pi}{2}\}$ and $P=(0,1)\times (0,1)$.
Then $T:O \to \mathbb R^2, T(x,y)=\begin{pmatrix}\frac{\sin x}{\cos y}\\ \frac{\sin y}{\cos x}\end{pmatrix}$ is a diffeomorphism with $T(O)=P$
How can I use $T$ to evaluate $\sum_{n=1}^{\infty}\frac{1}{n^2}$?
The hints of the exercise are:
$3\sum_{n=1}^{\infty}\frac{1}{n^2}=4\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}$ and for $n \in \mathbb N \cup \{0\}$: $\frac{1}{(n+1)^2}=\int_{(0,1)\times(0,1)}(xy)^n d\lambda_2(x,y)$