4

Evaluate $\lim\limits_{x\to\infty}x-x^2\ln\bigg(1+\dfrac1{x}\bigg)$.

My solution:

\begin{align} \lim\limits_{x\to\infty}x-x^2\ln\bigg(1+\frac1{x}\bigg)&=\lim\limits_{x\to\infty}x-\frac{x\ln(1+\frac1{x})}{\frac{1}x}\\ &=\lim\limits_{x\to\infty}x-(x\cdot 1)\\ &=\lim\limits_{x\to\infty}x-x\\ &=0 \end{align}

I got $0$ as answer, but the correct answer is $\frac12$.

I solved it using another method, but I just need to know why this won't work. Any ideas?

Andrew Chin
  • 7,389

4 Answers4

3

When you went from $$ \lim_{x \rightarrow \infty} x - \left( x \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) $$ to $$ \lim_{x \rightarrow \infty} x - \left( x \cdot 1 \right) $$ you must have passed through an expression where "$ \lim_{x \rightarrow \infty} \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}}$" appeared. (Otherwise, how did you replace that subexpression with its limit?)

Pretty much the only way to do that is along \begin{align*} \lim_{x \rightarrow \infty} \; & \left( x - \left( x \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) \right) \\ \qquad &\overset{?}{=} \left( \lim_{x \rightarrow \infty} x \right) - \left( \lim_{x \rightarrow \infty} x \right) \left( \lim_{x \rightarrow \infty} \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) \text{,} \end{align*} which is hopeless, because two of those limits do not exist. So the equality can (and as you have found, does) fail.

Always remember, the various versions of $$ \lim_{\dots} {\dots} = \left( \lim_{\dots} \dots \right) [\text{operation}] \left( \lim_{\dots} \dots \right) $$ all require that the limits on the right exist for equality to be guaranteed.

Eric Towers
  • 67,037
  • By this logic, we can't take the limit inside the subtraction in the first place right, as that will encounter one term which leads to infinity and the other which is indeterminate? – Shweta Banerjee Sep 21 '19 at 07:25
  • Agreed. (The indeterminate is the source of the "surprise" in this problem.) – Eric Towers Sep 21 '19 at 07:31
2

$$ \begin{align} \lim_{x\to\infty}\left(x-x^2\log\left(1+\frac1{x}\right)\right) &=\lim_{x\to\infty}\left(x-\frac{x\log\left(1+\frac1x\right)}{\frac1x}\right)\tag1\\ &=\lim_{x\to\infty}\left(x-x\lim_{x\to\infty}\frac{\log\left(1+\frac1x\right)}{\frac1x}\right)\tag2\\ &=\lim_{x\to\infty}x\lim_{x\to\infty}\left(1-\frac{\log\left(1+\frac1x\right)}{\frac1x}\right)\tag3\\ \end{align} $$ Step $(1)$ is fine. Step $(2)$ is where the argument in the question goes wrong. It is not legal to simply apply a limit to a piece inside another limit. Step $(3)$ is fine and shows that step $(2)$ introduced a limit of the form $\infty\cdot0$.

robjohn
  • 345,667
1

Write your term in the form $$\frac{\frac{1}{x}-\ln\left(1+\frac{1}{x}\right)}{\frac{1}{x^2}}$$ and use the rules of L'Hospital.

1

$$L=\lim_{x\rightarrow \infty} x\left(1-x\ln(1+1/x) \right) \Rightarrow x (1-x(\frac{1}{x}-\frac{1}{2} \frac{1}{x^2} + \frac{1}{3} \frac{1}{x^3}..))=\lim_{x \rightarrow \infty}(\frac{1}{2}-\frac{1}{3} \frac{1}{x})=\frac{1}{2}.$$

Z Ahmed
  • 43,235