When you went from
$$ \lim_{x \rightarrow \infty} x - \left( x \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) $$
to
$$ \lim_{x \rightarrow \infty} x - \left( x \cdot 1 \right) $$
you must have passed through an expression where "$ \lim_{x \rightarrow \infty} \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}}$" appeared. (Otherwise, how did you replace that subexpression with its limit?)
Pretty much the only way to do that is along \begin{align*}
\lim_{x \rightarrow \infty} \; & \left( x - \left( x \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) \right) \\
\qquad &\overset{?}{=} \left( \lim_{x \rightarrow \infty} x \right) - \left( \lim_{x \rightarrow \infty} x \right) \left( \lim_{x \rightarrow \infty} \frac{\ln \left( 1+\frac{1}{x} \right)}{\frac{1}{x}} \right) \text{,} \end{align*}
which is hopeless, because two of those limits do not exist. So the equality can (and as you have found, does) fail.
Always remember, the various versions of
$$ \lim_{\dots} {\dots} = \left( \lim_{\dots} \dots \right) [\text{operation}] \left( \lim_{\dots} \dots \right) $$
all require that the limits on the right exist for equality to be guaranteed.