The series $P$ and $Q$ are defined for $0<\theta<\pi$ as
$$P=1+\cos\theta+\cos2\theta+\cos3\theta+\ldots+\cos12\theta$$
$$Q=\sin\theta+\sin2\theta+\sin3\theta+\ldots+\sin12\theta$$
Show that $\displaystyle P+\mathrm iQ=\frac{\mathrm e^{6\mathrm i\theta}(\mathrm e^{\frac{13\mathrm i\theta}2}-\mathrm e^{-\frac{13\mathrm i\theta}2})}{\mathrm e^{\frac{\mathrm i\theta}2}-\mathrm e^{-\frac{\mathrm i\theta}2}}$.
We have
$$P=1+\cos\theta+\cos2\theta+\cos3\theta+\ldots+\cos12\theta$$
$$Q=\sin\theta+\sin2\theta+\sin3\theta+\ldots+\sin12\theta$$
So that
$$P+iQ=1+\mathrm e^{i\theta}+\mathrm e^{2i\theta}+\mathrm e^{3i\theta}+\ldots+\mathrm e^{11i\theta}+\mathrm e^{12i\theta}$$