Hint $\rm\ mod\ 911\!:\, 9x\!+\!11y\equiv 0 \Rightarrow x \equiv -11y/9\Rightarrow 11x\equiv -11^2 y/9 \equiv (2\cdot 911\! -\!121)\,y/9\equiv \color{blue}{189}y$
Remark $\ $ Replying to a comment, I don't compute $\rm\,1/9\,\ mod\,\ 911.\:$ Instead I use that $\rm\:mod\ 911\!:\, -11^2/9\,\equiv\, (911\,n\!-\!11^2)/9,\:$ so I compute $\rm\:n\:$ such that $\rm\:9\mid 911\,n-11^2,\ $ i.e. $\rm\: mod\ 9\!:\ 0\,\equiv\, 911\,n\!-\!11^2\!\equiv\, \color{#C00}2n\!-\!\color{#0A0}4\,$ $\Rightarrow$ $\,\rm n\equiv 2,\:$ so $\rm\: \frac{-11^2}9 \equiv \frac{911(2) - 11^2}9$ $\equiv 100(2)\!-\!11 \equiv \color{blue}{189}.\:$
(Note that casting nines allows one to quickly do the above calculation purely mentally, since $\rm\: mod\ 9\!:\ 911\equiv 9\!+\!1\!+\!1\equiv \color{#C00}2,\:$ and $\rm\:11^2\!\equiv (1\!+\!1)^2\!\equiv \color{#0A0}4).$