Show that for all integers n ≥ 1 applies that $5|2^{3n} - 3^{n}$
can anyone help?
Show that for all integers n ≥ 1 applies that $5|2^{3n} - 3^{n}$
can anyone help?
It is a one line proof: $$2^{3n}-3^n=8^n-3^n\equiv 3^n-3^n\equiv 0 \mod 5$$
Tips:
$2^{3n}=8^n$
$a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+\cdots+b^{n-1}\right)$
Hint:
You could prove it by mathematical induction using
$2^{3(n+1)}-3^{n+1}=8\times2^{3n}-3\times3^n=5\times2^{3n}+3(2^{3n}-3^n)$