0

Show that for all integers n ≥ 1 applies that $5|2^{3n} - 3^{n}$

can anyone help?

3 Answers3

0

It is a one line proof: $$2^{3n}-3^n=8^n-3^n\equiv 3^n-3^n\equiv 0 \mod 5$$

0

Tips:

$2^{3n}=8^n$

$a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+\cdots+b^{n-1}\right)$

MafPrivate
  • 4,033
0

Hint:

You could prove it by mathematical induction using

$2^{3(n+1)}-3^{n+1}=8\times2^{3n}-3\times3^n=5\times2^{3n}+3(2^{3n}-3^n)$

J. W. Tanner
  • 60,406