This question is related to cryptography, in particular Camellia cipher[1]. It's s-box includes computation of GF($2^8$) inverses. The irreducible polynomial is given as $x^8 + x^6 + x^5 + x^3 + 1$. I computed the inverse of all the 256 elements in GF($2^8$). I shall show the table below:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f
--------------------------------------------------------------------------------
00 | 0x00 0x01 0xb4 0xd8 0x5a 0x48 0x6c 0x78 0x2d 0x28 0x24 0xa4 0x36 0xc9 0x3c 0x38
10 | 0xa2 0xcf 0x14 0x6a 0x12 0x6b 0x52 0x47 0x1b 0xd1 0xd0 0x18 0x1e 0xbb 0x1c 0xba
20 | 0x51 0xb1 0xd3 0xa6 0x0a 0xa5 0x35 0x69 0x09 0x2c 0x81 0x4f 0x29 0x08 0x97 0x67
30 | 0xb9 0xca 0xdc 0x45 0x68 0x26 0x0c 0xc8 0x0f 0x3d 0xe9 0x61 0x0e 0x39 0x5d 0xfe
40 | 0x9c 0x8d 0xec 0xe1 0xdd 0x33 0x53 0x17 0x05 0x5b 0xe6 0xcc 0xae 0xf8 0x80 0x2b
50 | 0xb0 0x20 0x16 0x46 0xf4 0xe4 0x93 0x98 0xa0 0x9f 0x04 0x49 0xff 0x3e 0x87 0xc5
60 | 0xe8 0x3b 0x65 0x6f 0x6e 0x62 0x96 0x2f 0x34 0x27 0x13 0x15 0x06 0x79 0x64 0x63
70 | 0xb3 0xfa 0xaa 0x94 0xc0 0xeb 0x84 0xdf 0x07 0x6d 0xa8 0xc3 0x9a 0xe2 0x7f 0x7e
80 | 0x4e 0x2a 0xf2 0xc6 0x76 0xde 0xc4 0x5e 0xda 0xef 0xad 0xfc 0x9d 0x41 0xbf 0xd7
90 | 0xb6 0xf1 0x99 0x56 0x73 0xab 0x66 0x2e 0x57 0x92 0x7c 0xe3 0x40 0x8c 0xa1 0x59
a0 | 0x58 0x9e 0x10 0xce 0x0b 0x25 0x23 0xd2 0x7a 0xc2 0x72 0x95 0xfd 0x8a 0x4c 0xf9
b0 | 0x50 0x21 0xfb 0x70 0x02 0xd9 0x90 0xf0 0xcb 0x30 0x1f 0x1d 0xf7 0xd4 0xd6 0x8e
c0 | 0x74 0xea 0xa9 0x7b 0x86 0x5f 0x83 0xf3 0x37 0x0d 0x31 0xb8 0x4b 0xe7 0xa3 0x11
d0 | 0x1a 0x19 0xa7 0x22 0xbd 0xf6 0xbe 0x8f 0x03 0xb5 0x88 0xee 0x32 0x44 0x85 0x77
e0 | 0xed 0x43 0x7d 0x9b 0x55 0xf5 0x4a 0xcd 0x60 0x3a 0xc1 0x75 0x42 0xe0 0xdb 0x89
f0 | 0xb7 0x91 0x82 0xc7 0x54 0xe5 0xd5 0xbc 0x4d 0xaf 0x71 0xb2 0x8b 0xac 0x3f 0x5c
But, when I use these values I am not getting proper result as given in s-box table in camellia specifications[2]. Upon further analysis, I found that after the inverse is computed, it needs to be converted to the form a+bt, where a,b belongs to GF($2^4$) and t belongs to GF($2^8$). Inorder to learn how to do this, I referred a couple of research papers [3,4], but I couldn't understand them. So, I need to know how to do it. There has to be a 8x8 matrix which when multiplied with input from GF($2^8$) yields the form a+bt as mentioned above.
I need to know the math behind this. I have listed the references below. Please feel free to go through [1]. I may also be wrong in assumption of inverse computation. It's available in Section 3.2 Function gis the one which uses inverse computation.
Thank you in advance for any help.
References:
1.https://info.isl.ntt.co.jp/crypt/camellia/dl/reference/sac_camellia.pdf
2.https://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
3.https://www.emsec.ruhr-uni-bochum.de/media/crypto/attachments/files/2010/04/paar_php_diss.pdf Section 2.2
4.https://my.ece.utah.edu/~kalla/Comp-Algebra/composite-field.pdf Section 4