Can someone help me with this definite integral? $$ \int _{-\pi}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^x} dx $$
-
What have you tried? – IamKnull Sep 18 '19 at 15:27
-
Basically every elementary method, plugged it in a solver but it couldn't find it either, – Dabruh Sep 18 '19 at 15:33
-
hint: the answer is a pretty well known irrational number – Steven01123581321 Sep 18 '19 at 15:34
-
Use https://math.stackexchange.com/questions/439851/evaluate-the-integral-int-frac-pi2-0-frac-sin3x-sin3x-cos3x/439856#439856 – lab bhattacharjee Sep 18 '19 at 15:44
-
https://math.stackexchange.com/questions/741580/integral-int-pi-2-pi-2-frac12007x1-cdot-frac-sin2008x-si/741698#741698 – lab bhattacharjee Sep 18 '19 at 15:48
-
https://math.stackexchange.com/questions/771320/evaluate-int-pi-2-pi-2-frac-cosx1ex-dx/771323#771323 – lab bhattacharjee Sep 18 '19 at 15:49
-
https://math.stackexchange.com/questions/60045/showing-that-int-limits-aa-fracfx1ex-mathrm-dx-int-limits-0 – Hans Lundmark Sep 18 '19 at 20:08
1 Answers
Split the integral into two parts: $$I = \int _{-\pi}^{0}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^x} dx + \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^x} dx$$
Applying the substitution $x \to -x$ on the first integral: $$I = \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^{-x}} dx + \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^x} dx$$ Multiply top and bottom of first integral by $2^x$: $$I = \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{2^x}{1+2^x} dx + \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)}\frac{1}{1+2^x} dx$$ Sum the two integrals: $$I= \int _{0}^{\pi}\frac{\sin(3x)}{\sin(x)} dx$$ Use the fact that $\sin(3x) = 3\sin(x)-4\sin^3(x)$ by the triple-angle formula: $$I= \int _{0}^{\pi}3-4\sin^2(x) dx$$ Using the fact that $\int_{0}^{\pi}\sin^2(x)dx = \frac{\pi}{2}:$ $$I = 3\pi-4\left(\frac{\pi}{2}\right) = \pi$$

- 1,419

- 945