Let $a,b,c,r,s\in\mathbb{Z}$ such that $(a,b)=r$, $(a,c)=s$ and $(b,c)=1$. Prove that $(a,bc)=rs$.
Proof: $ax_1+by_1=r$ and $ax_2+cy_2=s$ for some $x_i\in\mathbb{Z}$. This gives
\begin{align*} by_1=r-ax_1\\ cy_2=s-ax_2\\ \end{align*}
Multiplying the two equations, we obtain
\begin{align*} bcy_1 y_2&=(r-ax_{1})(s-ax_{2})\\ &=rs-a(rx_{2}+sx_{1}-ax_{1}x_{2})\\ a(rx_{2}+sx_{1}-ax_1 x_2)+bcy_1 y_2 &=rs\\ \end{align*}
Therefore, $(a,bc)=rs$.
Is this proof enough?