According to de Moivre's Theorem: If $n$ is any positive integer then: $(\cos\theta + i\sin\theta)^n=\cos n\theta +i\sin n\theta$
Also $(\cos\theta +i\sin \theta)^{\frac{1}{n}} = \cos \frac{2r\pi +\theta}{n}+i\sin \frac{2r\pi+\theta}{n}$ where $r = 0,1,2,\ldots, n-1.$
Please suggest why the last part which is: $\cos \frac{2r\pi +\theta}{n}+i\sin \frac{2r\pi+\theta}{n}$ is not only $(\cos \frac{1}{n} \theta +i\sin\frac{1}{n}\theta)$?