Here I give a way to manipulate that easily, with a representation in base 2 and 3:
Applying Collatz function iterations to large integers
With $(\dots)_2$ the binary representation and $(\dots)_3$ the representation in base $3$, something like $\alpha:(0101)_2:(2)_3$ represents $\alpha \times 2^4 \times 3 + (0101)_2 \times 3 + (2)_3 = \alpha \times 2^4 \times 3 + 5 \times 3 + 2 = \alpha \times 2^4 \times 3 + 17$. And it is possible to mix figures in base 2 and figures in base 3.
(A little online tool to manipulate this kind of mixed radix.)
With this representation the problem 3x+1 can be formulate like that. Forall $\alpha \in \mathbb{N}$ :
- $\alpha:(0)_2 \longrightarrow \alpha$, for the even case
- $\alpha:(1)_2 \longrightarrow \alpha:(2)_3$, for the odd case
So the trivial case:
$\alpha:(\underbrace{0\dots00}_{k\text{ times}})_2
\stackrel{k}{\longrightarrow} \alpha$
A well known generalization of the first statement of the question, with $2^k - 1$:
$\alpha:(\underbrace{1\dots11}_{k\text{ times}})_2
\stackrel{k}{\longrightarrow} \alpha:(\underbrace{2\dots22}_{k\text{ times}})_3$
For the second statement, $2^k - 3 = 2^k - 1 - (10)_2$ so:
$\alpha:(\underbrace{1\dots101}_{k\text{ times}})_2
\longrightarrow \alpha:(\underbrace{1\dots10}_{k-1\text{ times}})_2:(2)_3
\longrightarrow \alpha:(\underbrace{1\dots1}_{k-2\text{ times}})_2:(1)_3
= \alpha:(\underbrace{1\dots1}_{k-3\text{ times}})_2:(2)_3:(0)_2
\longrightarrow \alpha:(\underbrace{1\dots1}_{k-3\text{ times}})_2:(2)_3
\stackrel{k-3}{\longrightarrow} \alpha:(\underbrace{2\dots22}_{k-2\text{ times}})_3$
For the third statement, $2^k - 11 = 2^k - 1 - (1010)_2$ so:
$\alpha:(\underbrace{1\dots10101}_{k\text{ times}})_2
\longrightarrow \alpha:(\underbrace{1\dots1010}_{k-1\text{ times}})_2:(2)_3
\longrightarrow \alpha:(\underbrace{1\dots101}_{k-2\text{ times}})_2:(1)_3
= \alpha:(\underbrace{1\dots10}_{k-3\text{ times}})_2:(2)_3:(0)_2
\longrightarrow \alpha:(\underbrace{1\dots10}_{k-3\text{ times}})_2:(2)_3
\longrightarrow \alpha:(\underbrace{1\dots1}_{k-4\text{ times}})_2:(1)_3
= \alpha:(\underbrace{1\dots1}_{k-5\text{ times}})_2:(2)_3:(0)_2
\longrightarrow \alpha:(\underbrace{1\dots1}_{k-5\text{ times}})_2:(2)_3
\stackrel{k-5}{\longrightarrow} \alpha:(\underbrace{2\dots22}_{k-4\text{ times}})_3$