2

$$(1 + \frac{1}{n})^n \geq 2$$

Base base: $n = 1$

LHS: $(1+ 1)^1 \leq 2$ RHS: 2

$2 \leq 2$ True.

Inductive step:

$$(1 + \frac{1}{n+1})^{n+1} \geq 2$$

$$(1 + \frac{1}{n+1})^n (1 + \frac{1}{n+1}) \geq 2$$

Im stuck

K. Gibson
  • 2,381

1 Answers1

2

Hint: Use Bernoulli's inequality: $$ (1+x)^n \ge 1 + nx \quad \mbox{for $x\ge 0$} $$ This can be proved by induction.

lhf
  • 216,483