The fact that, when solving limits of sequences ($n \in \mathbb{N}$), it strikes me as very bizarre that, even though I follow all the (elementary) rules for solving limits (of sequences), I can get different results for the same example! Consider the following:
$$ \lim_{n \to \infty} \left( \frac{3n + 1}{2n - 1} \right) = \frac{\lim_{n \to \infty}(3n + 1)}{\lim_{n \to \infty} (2n - 1)} = \frac{\lim_{n \to \infty}(3n) + \lim_{n \to \infty}(1)}{\lim_{n \to \infty} (2n) - \lim_{n \to \infty}(1)} = \frac{\infty + 1}{\infty - 1} \Longrightarrow \text{This sequence does not have a limit.} $$
I followed all of the rules for solving limits, yet this conclusion is wrong. The correct approach is the following.
$$ \lim_{n \to \infty} \left( \frac{3n + 1}{2n - 1} \right) = \lim_{n \to \infty} \left( \frac{n(3 + \frac{1}{n})}{n(2 - \frac{1}{n})} \right) = \lim_{n \to \infty} \left( \frac{3 + \frac{1}{n}}{2 - \frac{1}{n}} \right) =\frac{\lim_{n \to \infty}(3 + \frac{1}{n})}{\lim_{n \to \infty} (2 - \frac{1}{n})} = \frac{\lim_{n \to \infty}(3) + \lim_{n \to \infty}(\frac{1}{n})}{\lim_{n \to \infty} (2) - \lim_{n \to \infty}(\frac{1}{n})} = \frac{3 + 0}{2 - 0} = \frac{3}{2}. $$
My question is: why do I get the correct answer only if I arrange the sequence a certain way?