Let $a,b,n \in Z$ with $n > 0$ and $a \equiv b \mod n$. Also, let $c_0,c_1,\ldots,c_k \in Z$. Show that :
$c_0 + c_1a + \ldots + c_ka^k \equiv c_0 + c_1b + \ldots + c_kb^k \pmod n$.
For the proof I tried :
$a = b + ny$ for some $y \in Z$.
If I multiply from both side $c_1 + \ldots + c_k$ I obtain :
$c_1a + c_2a + \ldots + c_ka = (c_1b + c_2b + \ldots + c_k) (b + ny)$.
However I can't prove that is true when I multiply by both side $a^1 + a^2 + \ldots + a^k$.