Formula for roots of equation $\displaystyle z^m-az^n-1=0$ with definite integration:
$\displaystyle z_j=e^{2j\pi i/m}+\frac{1}{2\pi i}\left(e^{(2j+1)\pi i/m}\int_0^\infty log\left(1+a\frac{t^n}{1+t^m}e^{(2j+1)\pi in/m}\right)dt \\- e^{(2j-1)\pi i/m}\int_0^\infty log\left(1+a\frac{t^n}{1+t^m}e^{(2j-1)\pi in/m}\right)dt\right)$
where natural $m>n>0$, $j=0,1,...m-1$ and $a$ is natural.
Based on paper Лахтинъ, “Выраженiе корней трехчленнаго алгебраическаго уравненiя посредствомъ опредѣленныхъ интеграловъ” (1890).
Example calculation in pari/gp:
a= 7;
m= 5; n= 2;
print("Quintic: z^5-"a"*z^2-1=0\n");
print("Galois group: "polgalois('z^5-a*'z^2-1)"\n");
print("Ordinary solution:\n"polroots('z^5-a*'z^2-1)"\n");
print("Not-ordinary solution:");
Z= [];
for(j=0, 4,
z= exp(2*j*Pi*I/m) + 1/(2*Pi*I)
*(exp((2*j+1)*Pi*I/m)*intnum(t=0, oo, log(1+a*t^n/(1+t^m)*exp((2*j+1)*Pi*I*n/m)))
- exp((2*j-1)*Pi*I/m)*intnum(t=0, oo, log(1+a*t^n/(1+t^m)*exp((2*j-1)*Pi*I*n/m))));
Z= concat(Z, [z])
);
print(Z)
Output:
Quintic: z^5-7*z^2-1=0
Galois group: [120, -1, 1, "S5"]
Ordinary solution:
[1.9369100453804415363610723955778268241 + 0.E-38*I,
0.0014571193250340581699295533533713515578 - 0.37793919029580108279238966671308590927*I,
0.0014571193250340581699295533533713515578 + 0.37793919029580108279238966671308590927*I,
-0.96991214201525482635046575114228476362 - 1.6351464511815856113226711169592030156*I,
-0.96991214201525482635046575114228476362 + 1.6351464511815856113226711169592030156*I]~
Not-ordinary solution:
[1.9369100453804415363610723955778268026 + 0.E-39*I,
0.0014571193250034346617831783697118620865 + 0.37793919029582726259430943508563428674*I,
-0.96991214201522420284231937615862526337 + 1.6351464511815594315207513485866546421*I,
-0.96991214201522420284231937615862526336 - 1.6351464511815594315207513485866546421*I,
0.0014571193250034346617831783697118620703 - 0.37793919029582726259430943508563428672*I]