Very recently Cornel discovered two (update: in fact there are more as seen from the new entires) fascinating results involving harmonic series using ideas from his book, (Almost) Impossible Integrals, Sums, and Series, and which are the core of a new paper he's preparing:
\begin{equation*} \sum _{n=1}^{\infty } \frac{H_n H_{2 n}}{(2 n)^3} \end{equation*} \begin{equation*} =\frac{307}{128}\zeta(5)-\frac{1}{16}\zeta (2) \zeta (3)+\frac{1}{3}\log ^3(2)\zeta (2) -\frac{7}{8} \log ^2(2)\zeta (3)-\frac{1}{15} \log ^5(2) \end{equation*} \begin{equation*} -2 \log (2) \operatorname{Li}_4\left(\frac{1}{2}\right) -2 \operatorname{Li}_5\left(\frac{1}{2}\right); \end{equation*} and \begin{equation*} \sum _{n=1}^{\infty } \frac{H_n H_{2 n}}{(2 n-1)^3} \end{equation*} \begin{equation*} =6 \log (2)-2 \log ^2(2)-\frac{1}{12}\log ^4(2)+\frac{1}{12} \log ^5(2)-\frac{3}{2} \zeta (2)-\frac{21}{8} \zeta (3)+\frac{173}{32} \zeta (4) \end{equation*} \begin{equation*} +\frac{527}{128} \zeta (5)-\frac{21 }{16}\zeta (2) \zeta (3)+\frac{3}{2} \log (2) \zeta (2)-\frac{7}{2}\log (2)\zeta (3)-4\log (2)\zeta (4)+\frac{1}{2} \log ^2(2) \zeta (2) \end{equation*} \begin{equation*} -\frac{1}{2} \log ^3(2)\zeta (2)+\frac{7}{4}\log ^2(2)\zeta (3)-2 \operatorname{Li}_4\left(\frac{1}{2}\right)+2 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right), \end{equation*} or, after adjustments, the form $$\sum _{n=1}^{\infty}\frac{H_n H_{2 n}}{(2 n+1)^3}$$ $$=\frac{1}{12}\log ^5(2)+\frac{31}{128} \zeta (5)-\frac{1}{2} \log ^3(2)\zeta (2)+\frac{7}{4} \log ^2(2) \zeta (3)-\frac{17}{8} \log (2)\zeta (4) \\+2\log (2) \operatorname{Li}_4\left(\frac{1}{2}\right).$$ Update I : A new series entry obtained based on the aforementioned series \begin{equation*} \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^{(2)}}{(2 n)^2} \end{equation*} \begin{equation*} =\frac{23 }{32}\zeta (2) \zeta (3)-\frac{581}{128} \zeta (5)-\frac{2}{3}\log ^3(2) \zeta (2)+\frac{7}{4} \log^2(2)\zeta (3) +\frac{2}{15} \log ^5(2) \end{equation*} \begin{equation*} +4\log (2) \operatorname{Li}_4\left(\frac{1}{2}\right) +4 \operatorname{Li}_5\left(\frac{1}{2}\right); \end{equation*} Update II : Another new series entry obtained based on the aforementioned series \begin{equation*} \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^2}{(2 n)^2} \end{equation*} \begin{equation*} =\frac{23 }{32}\zeta (2) \zeta (3)+\frac{917 }{128}\zeta (5)+\frac{2}{3} \log ^3(2)\zeta (2)-\frac{7}{4} \log ^2(2)\zeta (3)-\frac{2}{15} \log ^5(2) \end{equation*} \begin{equation*} -4 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right)-4 \operatorname{Li}_5\left(\frac{1}{2}\right); \end{equation*} Update III : And a new series entry from the same class of series with an unexpected (and outstanding) closed-form \begin{equation*} \sum _{n=1}^{\infty } \frac{H_{2n} H_{n}^{(2)}}{(2 n)^2}=\frac{101 }{64}\zeta (5)-\frac{5 }{16}\zeta (2) \zeta (3); \end{equation*} It's interesting to note that $\displaystyle \sum _{n=1}^{\infty } \frac{H_{n} H_{n}^{(2)}}{n^2}=\zeta(2)\zeta(3)+\zeta(5)$, which may be found calculated in the book, (Almost) Impossible Integrals, Sums, and Series, by series manipulations.
A note: The series from UPDATE III seems to be known in literature, and it already appeared here https://math.stackexchange.com/q/1868355 (see $(3)$).
Update IV : Again a new series entry from the same class of series \begin{equation*} \sum _{n=1}^{\infty } \frac{H_n^2 H_{2 n}}{(2 n)^2} \end{equation*} \begin{equation*} =\frac{9 }{16}\zeta (2) \zeta (3)+\frac{421 }{64}\zeta (5)+\frac{2}{3} \log ^3(2)\zeta (2) -\frac{7}{4} \log ^2(2)\zeta (3) -\frac{2}{15} \log^5(2) \end{equation*} \begin{equation*} -4 \log(2)\operatorname{Li}_4\left(\frac{1}{2}\right) -4 \operatorname{Li}_5\left(\frac{1}{2}\right); \end{equation*} Update V : A strong series - September 26, 2019 $$\sum _{n=1}^{\infty } \frac{H_{2n} H_n^{(2)}}{(2 n+1)^2}$$ $$=\frac{4}{3}\log ^3(2)\zeta (2) -\frac{7}{2}\log^2(2)\zeta (3)-\frac{21}{16}\zeta(2)\zeta(3)+\frac{713}{64} \zeta (5)-\frac{4}{15} \log ^5(2)$$ $$-8 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right) -8\operatorname{Li}_5\left(\frac{1}{2}\right);$$ Update VI : Three very challenging series - September 28, 2019 $$i) \ \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^{(2)}}{(2 n+1)^2}$$ $$=\frac{35}{32} \zeta (2) \zeta (3)-\frac{651}{128} \zeta (5)+\frac{1}{3}\log^3(2)\zeta(2)-\frac{7}{4}\log^2(2)\zeta (3)+\frac{53}{16} \log (2)\zeta (4) -\frac{1}{30} \log ^5(2)$$ $$+4 \operatorname{Li}_5\left(\frac{1}{2}\right);$$ $$ii) \ \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^2}{(2 n+1)^2}$$ $$=\frac{35}{32} \zeta (2) \zeta (3)+\frac{465}{128} \zeta (5)+\frac{1}{2}\log^3(2)\zeta(2)-\frac{7}{4}\log^2(2)\zeta (3)-\frac{11}{16} \log (2)\zeta (4) -\frac{1}{12} \log ^5(2)$$ $$-2\log(2) \operatorname{Li}_4\left(\frac{1}{2}\right);$$ $$iii) \ \sum _{n=1}^{\infty } \frac{H_n^2 H_{2 n}}{(2 n+1)^2}$$ $$=\frac{21}{16} \zeta (2) \zeta (3)-\frac{217}{64} \zeta (5)+\frac{2}{3}\log^3(2)\zeta(2)-\frac{7}{4}\log^2(2)\zeta (3)+ \log (2)\zeta (4) -\frac{1}{15} \log ^5(2)$$ $$+8\operatorname{Li}_5\left(\frac{1}{2}\right);$$ Update VII : Critical series relation used in the Update VI - September 28, 2019 $$i) \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^2}{(2 n+1)^2}-\sum _{n=1}^{\infty } \frac{H_n H_{2 n}^{(2)}}{(2 n+1)^2}$$ $$=\frac{1}{6}\log ^3(2)\zeta (2) -4\log (2)\zeta (4)+\frac{279}{32} \zeta (5)-\frac{1}{20} \log ^5(2)-2 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right) -4 \operatorname{Li}_5\left(\frac{1}{2}\right);$$ $$ii) \ 4 \sum _{n=1}^{\infty } \frac{H_n H_{2 n}^2}{(2 n+1)^2}-\sum _{n=1}^{\infty } \frac{H_n^2 H_{2 n}}{(2 n+1)^2}$$ $$=\frac{49}{16} \zeta (2) \zeta (3)+\frac{1147}{64}\zeta (5)+\frac{4}{3}\log^3(2)\zeta (2) -\frac{21}{4} \log ^2(2)\zeta (3) -\frac{15}{4}\log (2)\zeta (4)-\frac{4}{15} \log ^5(2)$$ $$-8 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right) -8\operatorname{Li}_5\left(\frac{1}{2}\right),$$ where $H_n^{(m)}=1+\frac{1}{2^m}+\cdots+\frac{1}{n^m}, \ m\ge1,$ designates the $n$th generalized harmonic number of order $m$, $\zeta$ represents the Riemann zeta function, and $\operatorname{Li}_n$ denotes the Polylogarithm function.
A note: for example, for those interested, one of the possible ways of calculating both series from UPDATE III and UPDATE IV is based on building a system of relations with the two series by exploiting $\displaystyle \int_0^1 x^{n-1} \log^2(1-x)\textrm{d}x=\frac{H_n^2+H_n^{(2)}}{n}$ and $\displaystyle \sum_{n=1}^{\infty} x^n(H_n^2-H_n^{(2)})=\frac{\log^2(1-x)}{1-x}$. Apart from this, the series from UPDATE III allows at least a (very) elegant approach by using different means.
Using the first series we may obtain (based on the series representation of $\log(1-x)\log(1+x)$ and the integral $\int_0^1 x^{n-1}\operatorname{Li}_2(x)\textrm{d}x$) a way for proving that $$\int_0^1 \frac{\operatorname{Li}_2(x) \log (1+x) \log (1-x)}{x} \textrm{d}x=\frac{29 }{64}\zeta (5)-\frac{5 }{8}\zeta (2) \zeta (3).$$
Then, based on the solution below and using the alternating harmonic series in the book, (Almost) Impossible Integrals, Sums, and Series, we have
$$\int_0^1 \frac{\operatorname{Li}_2(-x) \log (1+x) \log (1-x)}{x} \textrm{d}x$$ $$=\frac{5 }{16}\zeta (2) \zeta (3)+\frac{123 }{32}\zeta (5)+\frac{2}{3} \log ^3(2)\zeta (2)-\frac{7}{4} \log ^2(2)\zeta (3)-\frac{2}{15}\log ^5(2)\\-4 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right)-4 \operatorname{Li}_5\left(\frac{1}{2}\right).$$ And if we add up the two previous integrals, we get $$\int_0^1 \frac{\operatorname{Li}_2(x^2) \log (1+x) \log (1-x)}{x} \textrm{d}x$$ $$=\frac{275}{32}\zeta (5)-\frac{5 }{8}\zeta (2) \zeta (3)+\frac{4}{3} \log ^3(2)\zeta (2)-\frac{7}{2} \log ^2(2)\zeta (3)-\frac{4}{15}\log ^5(2)\\-8 \log (2)\operatorname{Li}_4\left(\frac{1}{2}\right)-8 \operatorname{Li}_5\left(\frac{1}{2}\right).$$ Update (integrals): Another curious integral arising during the calculations $$\int_0^1 \frac{x \log (x) \log(1-x^2) \operatorname{Li}_2(x)}{1-x^2} \textrm{d}x=\frac{41 }{32}\zeta (2) \zeta (3)-\frac{269 }{128}\zeta (5).$$
QUESTION: Have these series ever been known in literature? I'm not interested in solutions but only if the series appear anywhere in the literature.