$$b_n=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}$$ $$n\geq1$$ $$c_n=\frac{1}{\sqrt1}+\frac{1}{\sqrt2}+...+\frac{1}{\sqrt{n}}$$ $$n\geq1$$
I have these 2 exercises and I need to prove the convergence of them by using the Cauchy series criterion :$$\lvert x_{n+p}-x_n \rvert \lt ε$$ Do i replace the terms $x_{n+p}$ and $x_n$ with: $$\lvert \frac{1}{(n+p)^2}-\frac{1}{n^2} \rvert \lt ε$$ $$\lvert \frac{1}{\sqrt(n+p)}-\frac{1}{\sqrt(n)} \rvert \lt ε$$? I used these 2 steps for both the series but I'm not sure if they're correct: $$b_{n+p}=\frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+...+\frac{1}{(n+p)^2}$$ $$c_{n+p}=\frac{1}{\sqrt(n+1)}+\frac{1}{\sqrt(n+2)}+...+\frac{1}{\sqrt(n+p)}$$ I used the criterion in that form but I'm not certain if this is correct or not.