Show that:
\begin{align*} a \cos \theta + b \sin \theta = \sqrt{a^2+b^2} \cos (\theta - \varphi) \end{align*}
fyi, the context is in studying the differential equation:
\begin{align*} y''(t) + c^2 y(t) &= 0 \\ \end{align*}
which has general solution:
\begin{align*} y(t) &= a \cos (ct) + b \sin (ct) \\ \end{align*}
My textbook says that this can easily be transformed into, where $\varphi \in \mathbb{R}$:
\begin{align*} y(t) &= \sqrt{a^2 + b^2} \cos (ct - \varphi) \\ \end{align*}