Wolframalpha says no, and I've had little luck elsewhere, maybe because search engines aren't the best at making sense of the "^" symbol.
And if not, are any numerical methods known for solving this integral?
Wolframalpha says no, and I've had little luck elsewhere, maybe because search engines aren't the best at making sense of the "^" symbol.
And if not, are any numerical methods known for solving this integral?
There is no known closed form I am aware of, but it may be worth noting that
$$J_0(-i\ln(2))=\int_a^{a+2\pi}2^{\sin(x)}~\mathrm dx$$
where $J$ is a Bessel function. As far as numerical goes you can use any standard method.
As Henry Lee answered $$2^{\sin(x)}=e^{\ln(2)\sin(x)}=\sum_{n=0}^\infty \frac{\log^n(2)}{n!}\sin^n(x)$$ $$\int2^{\sin(x)}\,dx=\sum_{n=0}^\infty \frac{\log^n(2)}{n!}\int\sin^n(x)\,dx$$ and the reduction formula $$\int\sin^n(x)\,dx= -\frac{\cos (x) \sin^{n-1}(x)}{n} + \frac{(n-1)}{n} \int \sin^{n-2} (x) dx$$
For example, considering the partial sums $$S_p(a)=\sum_{n=0}^p \frac{\log^n(2)}{n!}\int_0^{a}\sin^n(x)\,dx$$ as shown below, it converges quite fast $$\left( \begin{array}{ccccc} p & S_p\left(\frac{\pi }{6}\right)& S_p\left(\frac{\pi }{4}\right)&S_p\left(\frac{\pi }{3}\right)&S_p\left(\frac{\pi }{2}\right) \\ 0 & 0.5235987756 & 0.785398163 & 1.047197551 & 1.570796327 \\ 1 & 0.6164628892 & 0.988416272 & 1.393771141 & 2.263943507 \\ 2 & 0.6273434773 & 1.022696374 & 1.467542882 & 2.452616965 \\ 3 & 0.6282952403 & 1.026993004 & 1.479106238 & 2.489619704 \\ 4 & 0.6283616677 & 1.027421244 & 1.480540584 & 2.495285250 \\ 5 & 0.6283655248 & 1.027456676 & 1.480687809 & 2.495996373 \\ 6 & 0.6283657166 & 1.027459182 & 1.480700698 & 2.496071985 \\ 7 & 0.6283657249 & 1.027459337 & 1.480701682 & 2.496078957 \\ 8 & 0.6283657252 & 1.027459346 & 1.480701749 & 2.496079525 \\ 9 & 0.6283657253 & 1.027459346 & 1.480701753 & 2.496079566 \\ 10 & 0.6283657253 & 1.027459346 & 1.480701753 & 2.496079569 \end{array} \right)$$
$\int 2^{\sin x}~dx$
$=\int e^{\ln2\sin x}~dx$
$=\int\sum\limits_{n=0}^\infty\dfrac{\ln^{2n}2\sin^{2n}x}{(2n)!}~dx+\int\sum\limits_{n=0}^\infty\dfrac{\ln^{2n+1}2\sin^{2n+1}x}{(2n+1)!}~dx$
$=\int\left(1+\sum\limits_{n=1}^\infty\dfrac{\ln^{2n}2\sin^{2n}x}{(2n)!}\right)~dx+\int\sum\limits_{n=0}^\infty\dfrac{\ln^{2n+1}2\sin^{2n+1}x}{(2n+1)!}~dx$
For $n$ is any natural number,
$\int\sin^{2n}x~dx=\dfrac{(2n)!x}{4^n(n!)^2}-\sum\limits_{k=1}^n\dfrac{(2n)!((k-1)!)^2\sin^{2k-1}x\cos x}{4^{n-k+1}(n!)^2(2k-1)!}+C$
This result can be done by successive integration by parts.
For $n$ is any non-negative integer,
$\int\sin^{2n+1}x~dx$
$=-\int\sin^{2n}x~d(\cos x)$
$=-\int(1-\cos^2x)^n~d(\cos x)$
$=-\int\sum\limits_{k=0}^nC_k^n(-1)^k\cos^{2k}x~d(\cos x)$
$=-\sum\limits_{k=0}^n\dfrac{(-1)^kn!\cos^{2k+1}x}{k!(n-k)!(2k+1)}+C$
$\therefore\int\left(1+\sum\limits_{n=1}^\infty\dfrac{\ln^{2n}2\sin^{2n}x}{(2n)!}\right)~dx+\int\sum\limits_{n=0}^\infty\dfrac{\ln^{2n+1}2\sin^{2n+1}x}{(2n+1)!}~dx$
$=x+\sum\limits_{n=1}^\infty\dfrac{x\ln^{2n}2}{4^n(n!)^2}-\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{((k-1)!)^2\ln^{2n}2\sin^{2k-1}x\cos x}{4^{n-k+1}(n!)^2(2k-1)!}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!\ln^{2n+1}2\cos^{2k+1}x}{(2n+1)!k!(n-k)!(2k+1)}+C$
$=\sum\limits_{n=0}^\infty\dfrac{x\ln^{2n}2}{4^n(n!)^2}-\sum\limits_{n=1}^\infty\sum\limits_{k=1}^n\dfrac{((k-1)!)^2\ln^{2n}2\sin^{2k-1}x\cos x}{4^{n-k+1}(n!)^2(2k-1)!}-\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!\ln^{2n+1}2\cos^{2k+1}x}{(2n+1)!k!(n-k)!(2k+1)}+C$