Let $z = 1 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i$. Find smallest positive integer $n$ such that $z^n$ is real and positive.
Asked
Active
Viewed 938 times
0
-
Welcome to MSE! What have you tried so far? – Diglett Sep 02 '19 at 21:39
-
Hint: write $z$ in polar coordinates. – Dzoooks Sep 02 '19 at 21:40
3 Answers
1
Hint:
Write $z$ in complex exponential form $\,r\,\mathrm e^{i\theta}$.
Another hint:
You'll need the linearisation formulæ: $$\sin^2\theta=\tfrac12(1-\cos 2\theta),\qquad \cos^2\theta=\tfrac12(1+\cos 2\theta).$$

Bernard
- 175,478
-
I have problem with finding the angle i know that it is $\frac{\pi}{8}$, but i don't know hot to show it. – Berto Sep 02 '19 at 21:51
-
-
0
Hint:
By observation
If $2y=45^\circ,$
$$z=1+\cos2y+i\sin2y=2\cos^2y+2i\sin y\cos y=2\cos y(e^{iy})$$ using Intuition behind euler's formula

lab bhattacharjee
- 274,582
0
For $\theta=\arg(z)$, we have $$ \begin{align} \tan(\theta) &=\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\\[3pt] &=\sqrt2-1 \end{align} $$ Furthermore, $\theta$ is in the first quadrant and $$ \begin{align} \tan(2\theta) &=\frac{2\left(\sqrt2-1\right)}{1-\left(\sqrt2-1\right)^2}\\ &=1\\[3pt] &=\tan\left(\frac\pi4\right) \end{align} $$

robjohn
- 345,667