We seek to verify that
$$\sum_{k=3}^n (-1)^k {n\choose k}
\sum_{j=1}^{k-2} {j(n+1)+k-3\choose n-2}
= (-1)^{n-1} \left[ {n\choose 2} - {2n+1\choose n-2} \right].$$
where $n\ge 3.$ Now for
$$\sum_{k=3}^n (-1)^k {n\choose k} {k-3\choose n-2}$$
to be non-zero we would need $k-3\ge n-2$ or $k\ge n+1$, which is
not in the range, so it is zero and we may work with
$$\sum_{k=3}^n (-1)^k {n\choose k}
\sum_{j=0}^{k-2} {j(n+1)+k-3\choose n-2}
\\ = \sum_{k=3}^n (-1)^k {n\choose k}
\sum_{j\ge 0} {j(n+1)+k-3\choose n-2} [[0\le j\le k-2]]
\\ = \sum_{k=3}^n (-1)^k {n\choose k}
\sum_{j\ge 0} {j(n+1)+k-3\choose n-2}
\;\underset{z}{\mathrm{res}}\; \frac{1}{z^{k-1}} \frac{z^j}{1-z}
\\ = \;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\sum_{k=3}^n (-1)^k {n\choose k} \frac{1}{z^k}
\sum_{j\ge 0} {j(n+1)+k-3\choose n-2} z^j
\\ = \;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\sum_{k=3}^n (-1)^k {n\choose k} \frac{1}{z^k}
\sum_{j\ge 0} \;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}}
(1+w)^{j(n+1)+k-3} z^j
\\ = \;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}}
\sum_{k=3}^n (-1)^k {n\choose k} \frac{1}{z^k} (1+w)^{k-3}
\sum_{j\ge 0} (1+w)^{j(n+1)} z^j
\\ = \;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{1-z(1+w)^{n+1}}
\sum_{k=3}^n (-1)^k {n\choose k} \frac{1}{z^k} (1+w)^{k-3}
\\ = \;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\frac{1}{1-z(1+w)^{n+1}}
\\ \times \sum_{k=3}^n (-1)^k {n\choose k} \frac{1}{z^k} (1+w)^{k}.$$
We compute this by lowering the index to $k=0$ and subtracting the
values for $k=0,1$ and $k=2$ from this completed sum. First
(piece $A$), extending to $k=0$ we find
$$\;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\frac{1}{1-z(1+w)^{n+1}}
\left(1-\frac{1+w}{z}\right)^n
\\ = \;\underset{z}{\mathrm{res}}\; \frac{1}{z^{n}} \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\frac{1}{1-z(1+w)^{n+1}} (z-1-w)^n.$$
We introduce $z/(1+w-z) = v$ so that $z = v(1+w)/(1+v)$ and $dz =
(1+w)/(1+v)^2 \; dv$ as well as $z/(1-z) = v(1+w)/(1-vw)$ to get
$$\;\underset{v}{\mathrm{res}}\; \frac{(-1)^n}{v^n}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\frac{v(1+w)}{1-vw} \frac{1}{1-v(1+w)^{n+2}/(1+v)}
\frac{1+w}{(1+v)^2}
\\ = \;\underset{v}{\mathrm{res}}\; \frac{(-1)^n}{v^{n-1}} \frac{1}{1+v}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{1+w}
\frac{1}{1-vw}
\frac{1}{1-v((1+w)^{n+2}-1)}.$$
Observe that
$$\frac{1}{1+v} \frac{1}{1-vw}
= \frac{1}{1+w} \frac{1}{1+v} + \frac{w}{1+w} \frac{1}{1-vw}.$$
We thus have piece $A_1:$
$$\;\underset{v}{\mathrm{res}}\; \frac{(-1)^n}{v^{n-1}} \frac{1}{1+v}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^2}
\frac{1}{1-v((1+w)^{n+2}-1)}
\\ = \;\underset{w}{\mathrm{res}}\; \frac{(-1)^n}{w^{n-1}} \frac{1}{(1+w)^2}
\sum_{q=0}^{n-2} (-1)^{n-2-q} ((1+w)^{n+2}-1)^q
\\ = \;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^2}
\sum_{q=0}^{n-2} (1-(1+w)^{n+2})^q
\\ = \;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^2}
\frac{1-(1-(1+w)^{n+2})^{n-1}}{(1+w)^{n+2}}
\\ = [w^{n-2}]
\frac{1-(-(n+2)w-\cdots-w^{n+2})^{n-1}}{(1+w)^{n+4}}
= (-1)^{n-2} {n-2+n+3\choose n-2}
\\ = (-1)^n {2n+1\choose n-2}.$$
We have one correct piece. Continuing with $A_2$ (which we conjecture
to be zero) we find
$$\;\underset{v}{\mathrm{res}}\; \frac{(-1)^n}{v^{n-1}}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-2}} \frac{1}{(1+w)^2}
\frac{1}{1-vw}
\frac{1}{1-v((1+w)^{n+2}-1)}
\\ = \;\underset{w}{\mathrm{res}}\; \frac{(-1)^n}{w^{n-2}} \frac{1}{(1+w)^2}
\sum_{q=0}^{n-2} w^{n-2-q} ((1+w)^{n+2}-1)^q
\\ = \;\underset{w}{\mathrm{res}}\; \frac{(-1)^n}{w^{n-2}} \frac{1}{(1+w)^2}
\sum_{q=0}^{n-2} w^{n-2-q} ((n+2)w+\cdots+w^{n+2})^q
\\ = \;\underset{w}{\mathrm{res}}\; \frac{(-1)^n}{w^{n-2}} \frac{1}{(1+w)^2}
\sum_{q=0}^{n-2} ((n+2)^q w^{n-2} +\cdots+w^{(n+1)q+n-2})
\\ = \;\underset{w}{\mathrm{res}}\; \frac{(-1)^n}{(1+w)^2}
\sum_{q=0}^{n-2} ((n+2)^q +\cdots+w^{(n+1)q}) = 0.$$
Continuing with the second piece $B$ which corresponds to $k=0$
$$\;\underset{z}{\mathrm{res}}\; \frac{z}{1-z}
\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\frac{1}{1-z(1+w)^{n+1}}.$$
This is zero by inspection because there is no pole at $z=0.$ More
formally,
$$\;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^3}
\\ \times \;\underset{z}{\mathrm{res}}\; z ( 1 + z + z^2 + \cdots)
(1 + z (1 + w)^{n+1} + z^2 (1+w)^{2n+2}+\cdots) = 0.$$
For the third piece $C$ which corresponds to $k=1$ we get a factor
of $-n (1+w)/z$ for
$$-n \;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{(1+w)^2}
\\ \times \;\underset{z}{\mathrm{res}}\; ( 1 + z + z^2 + \cdots)
(1 + z (1 + w)^{n+1} + z^2 (1+w)^{2n+2}+\cdots) = 0.$$
The factor for the fourth piece $D$ is ${n\choose 2} (1+w)^2/z^2:$
$${n\choose 2} \;\underset{w}{\mathrm{res}}\; \frac{1}{w^{n-1}} \frac{1}{1+w}
\\ \times \;\underset{z}{\mathrm{res}}\; \frac{1}{z} ( 1 + z + z^2 + \cdots)
(1 + z (1 + w)^{n+1} + z^2 (1+w)^{2n+2}+\cdots)
\\ = {n\choose 2} \;\underset{w}{\mathrm{res}}\;
\frac{1}{w^{n-1}} \frac{1}{1+w}
= (-1)^n {n\choose 2}.$$
Subtracting $B, C$ and $D$ from $A$ we finally obtain
$$\bbox[5px,border:2px solid #00A000]{
(-1)^n \left[ {2n+1\choose n-2} - {n\choose 2} \right].}$$