A friend asked me to prove
$$\int_0^1\frac{1-x}{(\ln x)(1+x)}\ dx=\ln\left(\frac2{\pi}\right)$$
and here is my approach:
\begin{align} I&=\int_0^1\frac{1-x}{\ln x}\frac1{1+x}\ dx\\ &=\int_0^1\left(-\int_0^1x^y\ dy\right)\frac1{1+x}\ dx\\ &=\int_0^1\left(-\int_0^1\frac{x^y}{1+x}\ dx\right)\ dy\\ &=\int_0^1\left((-1)^n\sum_{n=1}^\infty\int_0^1x^{y+n-1}\ dx\right)\ dy\\ &=\int_0^1\left(\sum_{n=1}^\infty\frac{(-1)^n}{y+n}\right)\ dy\\ &=\sum_{n=1}^\infty(-1)^n\int_0^1\frac1{y+n}\ dy\\ &=\sum_{n=1}^\infty(-1)^n\left[\ln(n+1)-\ln(n)\right]\tag{1} \end{align}
Now how can we finish this alternating sum into $\ln\left(\frac2{\pi}\right)$?
My idea was to use
$$\operatorname{Li}_a(-1)=(1-2^{-a})\zeta(a)=\sum_{n=1}^\infty\frac{(-1)^n}{n^a}$$
and if we differentiate both sides with respect to $a$ we get
$$2^{1-a}(\zeta^{'}(a)-\ln2\zeta(a))-\zeta^{'}(a)=\sum_{n=1}^\infty\frac{(-1)^{n-1}\ln(n)}{n^a}\tag{2}$$
wolfram says that $\sum_{n=1}^\infty(-1)^n\ln(n)$ is divergent which means we can not take the limit for (2) where $a\mapsto 0$ which means we can not break the sum in (1) into two sums. So any idea how to do (1)?
Other question is, I tried to simplify the sum in (1) as follows
\begin{align} S&=\sum_{n=1}^\infty(-1)^n\left[\ln(n+1)-\ln(n)\right]\\ &=-\left[\ln(2)-\ln(1)\right]+\left[\ln(3)-\ln(2)\right]-\left[\ln(4)-\ln(3)\right]+\left[\ln(5)-\ln(4)\right]-...\\ &=-2\ln(2)+2\ln(3)-2\ln(4)+...\\ &=2\sum_{n=1}^\infty(-1)^n\ln(n+1) \end{align}
which is divergent again. what went wrong in my steps?
Thanks.