1

Let $X \in \mathbb{R}^{n \times n}$, $X_i$ denote the $i$-th column of $X$ and let $\lambda_i \in \mathbb{R}$. Find

$$\det \left( \lambda_1X_1X_1^T + \lambda_2X_2X_2^T + \cdots + \lambda_nX_nX_n^T \right)$$

I calculated that the matrix inside determinant will be symmetrical and its elements will be:

$\lambda_1x_{i1}^2 + ... \lambda_nx_{in}^2$ - for diagonal elements

$\lambda_1x_{i1}x_{j1} + ... + \lambda_nx_{in}x_{jn}$ - everything else

From there I am stuck on what to do next

(this task also asks for which $\lambda_i$ determinant will be $\ge 0$, maybe this gives some clue)

1 Answers1

1

Note that $\lambda_1X_1X_1^T + \lambda_2X_2X_2^T + ... + \lambda_nX_nX_n^T=XDX^T$ where $D$ is a diagonal matrix with diagonal $(\lambda_1,\ldots,\lambda_n)$.

Indeed $(XDX^T)_{ij} = \sum_k X_{ik}D_{kk}X_{jk} = \sum_k \lambda_k (X_kX_k^T)_{ij}=(\sum_k \lambda_k X_kX_k^T)_{ij}$.

Hence $$\begin{aligned}\det(\lambda_1X_1X_1^T + \lambda_2X_2X_2^T + ... + \lambda_nX_nX_n^T) &= \det(XDX^T)=\det(X)\det(D)\det(X^T)\\ &=\left(\prod_k \lambda_k\right) \det(X)^2\end{aligned}$$

Gabriel Romon
  • 35,428
  • 5
  • 65
  • 157