A sequence $y=(y_n)_n$ is said to be a statistically convergent to $\lambda$ if for any $\epsilon>0$ the set $\{n\in\mathbb N: |y_n-\lambda|\geq\epsilon\}$ has natural density $0$.
Consider the following sequence :
$$x=(~\underbrace{0,0,\dots,0}_{100\text{ copies}}~,~ \overbrace{1,1,\dots,1}^{10\text{ copies}}~,~ \underbrace{0,0,\dots,0}_{100^2\text{ copies}}~,~ \overbrace{1,1,\dots,1}^{10^2\text{ copies}}~,~ \underbrace{0,0,\dots,0}_{100^3\text{ copies}}~,~ \overbrace{1,1,\dots,1}^{10^3\text{ copies}}~,~ \dots)$$
This sequence is not almost convergent because there exists no $\Omega\in \mathbb R$ such that $\lim\limits_{k\to \infty}\frac{x_{n+1}+x_{n+2}+\dots+x_{n+k}}{k}=\Omega$, for each $n\in \mathbb N$.
My Question : Is the sequence $x$ statistically convergent to $0$?
How can I prove or disprove that? How we deal here with natural density?
This sequence is from Proposition 1.1 in Miller, H. I.; Orhan, C., On almost convergent and statistically convergent subsequences, Acta Math. Hung. 93, No. 1-2, 135-151 (2001). ZBL0989.40002, MR1924673.