I'm trying to solve this problem: Find a limit development of order 7 for the function $f(x)=\frac{x}{\arctan(x^{2})}-\frac{1}{x}$. Where we use the next definition:
Definition. Let $f\colon I\to\mathbb{R}$ be a function and $x_{0}\in I$. We say that $f$ has a limit development of order $n$ in $x_{0}$ provided that there exist $a_{0},a_{1},\ldots,a_{n}\in\mathbb{R}$ such that for $x\in I$ $$ f(x)=a_{0}+a_{1}(x-x_{0})+\ldots+a_{n}(x-x_{0})^{n}+o((x-x_{0})^{n}) \text{ (small $o$)}. $$
Using Taylor series for $\arctan x$ at 0, we have that $\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$, and therefore \begin{align*} \arctan(x^{2}) & =x^{2}-\frac{(x^{2})^{3}}{3}+\frac{(x^{2})^{5}}{5}-\frac{(x^{2})^{7}}{7}+\ldots\\ & =x^{2}-\frac{x^{6}}{3}+\frac{x^{10}}{5}-\frac{x^{14}}{7}+\ldots \end{align*}
So, replacing for $f(x)=\frac{x}{\arctan(x^{2})}-\frac{1}{x}$ I have that: \begin{align*} f(x) & =\frac{x}{x^{2}-\frac{x^{6}}{3}+\frac{x^{10}}{5}-\frac{x^{14}}{7}+\ldots}-\frac{1}{x}\\ & =\frac{x}{x\left(x-\frac{x^{5}}{3}+\frac{x^{9}}{5}-\frac{x^{13}}{7}+\ldots\right)}-\frac{1}{x}\\ & =\frac{1}{x}\cdot\left(1-\frac{x^{4}}{3}+\frac{x^{8}}{5}-\frac{x^{12}}{7}+\ldots\right)^{-1}-\frac{1}{x} \end{align*}
But I couldn't obtain the form that is necessary for the limit development because I have that part with the inverse of $1-\frac{x^{4}}{3}+\frac{x^{8}}{5}-\frac{x^{12}}{7}+\ldots$. Could you help me or give me some suggestion?
Thanks.