From Gradshteyn & Ryzhik $3.692.6$ we know that $$\int_{-\infty }^{\infty } \left(\cos \left(\sqrt{x^2-1}\right)-\cos \left(\sqrt{x^2+1}\right)\right) \ dx=\pi (J_1(1)+I_1(1))$$ How can we establish it? Thanks for helping.
Update: I found a proof. One may start from the well-known formula $$\int_{-\infty }^{\infty } \frac{\sin \left(p \sqrt{a^2+x^2}\right)}{\sqrt{a^2+x^2}} \, dx=\pi J_0(a p)$$ Let $a=i a$, subtract it from the original result, differntiate with respect to $p$ yields: $$\int_{-\infty }^{\infty } \left(\cos \left(p \sqrt{x^2-a^2}\right)-\cos \left(p \sqrt{a^2+x^2}\right)\right) \, dx=\pi a (J_1(a p)+I_1(a p))$$ Now letting $p=a=1$ completes the proof. This also verified @skbmoore's generating function identity.
Furthermore, using the same technique in my answer of this post, a formula revealing beautiful symmetry is found: $$\int_{-\infty }^{\infty } \left(\cos \left(p \sqrt{x^2-a^2}\right)-\cos \left(p \sqrt{a^2+x^2}\right)\right) \, dx=\sum _{n=-\infty }^{\infty } \left(\cos \left(p \sqrt{n^2-a^2}\right)-\cos \left(p \sqrt{a^2+n^2}\right)\right)=\pi a (J_1(a p)+I_1(a p))$$