Show that \begin{eqnarray*} I=\int_0^1 \int_0^1 \frac{dx \,dy}{\sqrt{1-x^2y^2}} = \frac{\pi}{2} \ln 2. \end{eqnarray*}
My try ... from this question here we have \begin{eqnarray*} \int_0^1 \frac{ \sin^{-1}(x)}{x} \,dx = \frac{\pi}{2} \ln 2 . \end{eqnarray*} And from this question here we have \begin{eqnarray*} \int_0^1 \ln \left( \frac{1+ax}{1-ax} \right) \frac{dx}{x\sqrt{1-x^2}}=\pi\sin^{-1} a,\qquad |a|\leq 1. \end{eqnarray*} It is easy to show \begin{eqnarray*} \int_0^1 \frac{dy}{1+yz}=\frac{1}{z} \ln(1+z). \end{eqnarray*} So we have (with a little tad of algebra) \begin{eqnarray*} \frac{\pi}{2} \ln 2 &=& \int_0^1 \frac{ \sin^{-1}(x)}{x}\, dx \\ &=& \frac{1}{\pi} \int_0^1 \int_0^1 \ln \left( \frac{1+xt}{1-xt} \right) \frac{dt}{xt\sqrt{1-t^2}} x\, dx \\ &=& \frac{2}{\pi} \int_0^1 \int_0^1 \int_0^1 \frac{dx \,dy\, dt}{(1-x^2y^2t^2)\sqrt{1-t^2} } \\ \end{eqnarray*} This suggests we should consider the integral (sub $t=\sin(\theta)$) \begin{eqnarray*} \frac{2}{\pi} \int_0^1 \frac{ dt}{(1-x^2y^2t^2)\sqrt{1-t^2} } \\ = \int_0^{\pi/2} \frac{d \theta }{1- x^2 y^2 \sin^2(\theta)}. \end{eqnarray*} Now it is well known (Geometrically expand, integrate term by term & sum the familiar plum) that \begin{eqnarray*} \frac{2}{\pi} \int_0^{\pi/2} \frac{d \theta }{1- \alpha \sin^2(\theta)}=\frac{2}{\pi} \frac{1}{\sqrt{1-\alpha}} \end{eqnarray*} and using this we have \begin{eqnarray*} \frac{\pi}{2} \ln 2 =\int_0^1 \int_0^1 \frac{dx\, dy}{\sqrt{1-x^2y^2}} . \end{eqnarray*}
The above double integral reminds of \begin{eqnarray*} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}=\int_0^1 \int_0^1 \frac{dx\, dy}{1-x^2y^2} = \frac{\pi^2}{8} \end{eqnarray*} which can be evaluated using the substitution $x= \frac{\sin u}{\cos v}$, $y= \frac{\sin v}{\cos u}$.
My solution above used some pretty heavy machinery to establish the result. So my question is: is there an easier method ?