1) Fermat's little theorem say that if $\gcd(5,p) = 1$ and $p $ is prime that $5^{p-1} \equiv 1 \pmod p$.
So $5^6\equiv 1 \pmod 7$ and $5^{10}\equiv 1 \pmod {11}$ and $5^{13}\equiv 1 \pmod {13}$.
So if $2107 = 6k + r$ then $5^{2017}=5^{6k+r}=(5^6)^k*5^r \equiv 1^k*5^r\equiv 5^r\pmod 7$.
So that this how you solve $5^{2017}\pmod {7}$. Do the the same for $11,13$.
.....
So now you have $5^{2017}\equiv a \pmod 7$ and $5^{2017}\equiv b \pmod {11}$ and $5^{2017}\equiv c \pmod {11}$.
So the chinese remainder theorem says there is a single unique solution to $5^{2017}\equiv x \pmod {7*11*13}$ that satisfies $x \equiv a \pmod 7$ and $x \equiv b \pmod {11}$ and $c\equiv \pmod 13$.
And the chinese remainder shows you how to find it.
$7j + 13m =1$ has a solution. FInd it.
So $7bj + 11am = N$ will be so that $N\equiv 7bj + 11am \equiv 7bj +11bm \equiv b\pmod {11}$ and $N\equiv 7bj + 11am \equiv 7aj + 11am \equiv a \pmod 7$.
And
$77k + 13p= 1$ also has a solution. Find it.
So $77ck + 13Np = M$ will be so that $M\equiv 91ck + 13cp \equiv c\pmod{13}$ while $M\equiv 77Nk + 13Np \equiv N \equiv a \pmod 7$ and $M\equiv N\equiv b \pmod {11}$.
So $5^{2017}\equiv M \pmod {1001}$
.....
So you have $5^{2017} \equiv 5 \pmod 7$ and $5^{2017}\equiv 3 \pmod 11$.
I figure that $2*11 - 3*7 = 1$
And so $2*11*5 - 3*7*3 = 47$ and
$47\equiv 2*11*5 - 3*7*3 \equiv 2*11*5- 3*7*5\pmod 7\equiv 5\pmod 7$.
And $47 \equiv 2*11*5 - 3*7*3 \equiv 2*11*3 - 3*7*3 \equiv 3\pmod {11}$.
....
Now do the same thing with $47\pmod {77}$ and $5\pmod {13}$
Use $6*13 - 77 =1$.
To get $6*13*47 - 5*77 = 3281 = 278+3003 \equiv 278 \pmod{1001}$.