After I have figured out that $\pi\log2\cos\left(\frac a2\right)$ stands for $\pi\log\left(2\cos\left(\frac a2\right)\right)$ (and not for $\pi\log(2)\cdot\cos\left(\frac a2\right)$ as I thought) a few things suddenly became clear. Furthermore I would like to ask for a reference on the part of "it is known".
Let's start! As mentioned in the comments by Sonal_sqrt maybe Feynman is the way to go. So, consider the integral $I(a)$ using the obvious parameterization. Note that $I(0)=\pi\log(2)$. Differentiate w.r.t. $a$ we obtain
\begin{align*}
\frac{\mathrm d}{\mathrm da}\int_0^\infty\frac{\log(x^2+2x\sin(a)+1)}{1+x^2}\mathrm dx&=\int_0^\infty\frac{\partial}{\partial a}\frac{\log(x^2+2x\sin(a)+1)}{1+x^2}\mathrm dx\\
&=\int_0^\infty\frac{2x\cos(a)}{(1+x^2)(x^2+2x\sin(a)+1)}\mathrm dx\\
&=\cot(a)\left[\int_0^\infty\frac{\mathrm dx}{1+x^2}-\int_0^\infty\frac{\mathrm dx}{x^2+2x\sin(a)+1}\right]\\
&=\frac\pi2\cot(a)-\frac1{\sin(a)}\left[\frac\pi2-a\right]\\
\therefore~\frac{\mathrm d}{\mathrm da}\int_0^\infty\frac{\log(x^2+2x\sin(a)+1)}{1+x^2}\mathrm dx&=\frac\pi2\cot(a)-\frac\pi2\frac1{\sin(a)}+\frac a{\sin(a)}
\end{align*}
Integrating back reduces the problem to
$$\int_0^\infty\frac{\log(x^2+2x\sin(a)+1)}{1+x^2}\mathrm dx=\pi\log\left(2\cos\left(\frac a2\right)\right)+\int_0^a\frac{a'}{\sin(a')}\mathrm da'$$
Where we already used that $I(0)=\pi\log(2)$ (the rest are elementary integrals, nothing really interesting). Using Integration By Parts (and utilizing the Clausen Function, in particular its capability of expressing closed-form anti-derivatives for logarithmo-trigonometric integrals) we may get
\begin{align*}
\int_0^a\frac{a'}{\sin(a')}\mathrm da'&=\frac a2\log\left(\frac{1-\cos(a)}{1+\cos(a)}\right)-\frac12\int_0^a\log\left(\frac{1-\cos(a')}{1+\cos(a')}\right)\mathrm da'\\
&=a\log\left(\tan\left(\frac a2\right)\right)-2\int_0^{\frac a2}\log(\tan a')\mathrm da'\\
&=a\log\left(\tan\left(\frac a2\right)\right)+\operatorname{Cl}_2(a)+\operatorname{Cl}_2(\pi-a)
\end{align*}
This expression may be further "simplified" as
\begin{align*}
a\log\left(\tan\left(\frac a2\right)\right)+\operatorname{Cl}_2(a)+\operatorname{Cl}_2(\pi-a)&=2\operatorname{Ti}_2\left(\tan\frac a2)\right)\\
&=a\log\left(\tan\left(\frac a2\right)\right)+2\sum_{n\geqslant0}\frac{\sin[(2n+1)a]}{(2n+1)^2}
\end{align*}
The first equality follows from here while the second is a more or less well-known result due to Ramanujan.
$$\small\therefore~\int_0^\infty\frac{\log(x^2+2x\sin(a)+1)}{1+x^2}\mathrm dx~=~\pi\log\left(2\cos\left(\frac a2\right)\right)+a\log\left(\tan\left(\frac a2\right)\right)+2\sum_{n\geqslant0}\frac{\sin[(2n+1)a]}{(2n+1)^2}$$
Of course, we do not need the whole power of Ramanujan's identity as we can prove the crucial relation between the occuring Clausen Functions and the sum directly using the Fourier Series representation of the Clausen Function. I omitted explanations for trigonometric manipulations as they are quite straightforward.