Do we need axiom of choice to prove $A \subset B \subset A \Rightarrow A = B$ ?
The proof is trivial, define $C = B \backslash A$. If $A \neq B$ then $C$ is nonempty, so pick any element $x$ of $C$, then $x \in C \Rightarrow x \in B, x \not \in A$, but as $B \subset A$, thus $x \in A$, a contradiction.
Do we need actually need AoC to justify the bolded part ?