Determine whether the following series is convergent or not, with explanation. $$ \begin{equation} \sum\limits_{n = 1}^\infty {\frac{{{{\left( {2 + \sin n} \right)}^n}}}{{{3^n} \cdot n}}} \end{equation} $$ I guess the above series is disvergent, but I cannot prove it. I have the following assumptions:
The function $\sin n$ has least upper bound one for counting number $n$.
In each 'cycle', there will be a positive number $n_k$ which lets $\sin n_k \to 1$.
Then I just consider all positive numbers $n_k \left(k=1,2,\cdots\right)$ $$ \begin{equation} \sum\limits_{{n_k}} {\frac{{{{\left( {2 + \sin n} \right)}^n}}}{{{3^n} \cdot n}}} \to \sum\limits_{{n_k}} {\frac{1}{n}}, \end{equation} $$ it looks like a harmonic series.
PS.
I used MATLAB to find the maximum of $\sin n$ within a certain range.
n=1:1e4;[m,index]=max(sin(n));
Then, I got $\rm{m}=1.0000$ and $\rm{index}=9929$.