I need to solve this sum, but unfortunately I have no idea how to start.I would be grateful for every advice.
$$\sum _{n=1}^{\infty }{\left(q\right)^n\left(\sin(na)\right), |q|<1}$$
I need to solve this sum, but unfortunately I have no idea how to start.I would be grateful for every advice.
$$\sum _{n=1}^{\infty }{\left(q\right)^n\left(\sin(na)\right), |q|<1}$$
It's the imaginary part of $$\sum_{n=0}^\infty q^n e^{ina}=\frac1{1-qe^{ia}}.$$
As $\;\sin nt=\operatorname{Im}\mathrm e^{int}$, we have $$\sum _{n=1}^{\infty }(q )^n \sin(na)=\operatorname{Im}\Bigl(\sum _{n=1}^{\infty }(q \mathrm e^{it})^n\Bigr).$$ Also, we have $$\sum _{n=1}^{\infty } z^n=z\sum _{n=0}^{\infty } z^n=\frac z{1-z},\quad |z|<1.$$
The complex method is probably the best.
But instead you can: prove by induction on $N$ that
$$
\sum _{n=1}^{N}{q}^{n}\sin \left( na \right) ={\frac {{q}^{N+2}\sin
\left( Na \right) -{q}^{N+1}\sin \left( \left( N+1 \right) a
\right) +q \sin \left( a \right)}{{q}^{2}-2q\cos \left( a \right)+
1}}
$$
and then do the limit easily:
$$
\sum _{n=1}^{\infty}{q}^{n}\sin \left( na \right) = {\frac {q \sin \left( a \right)}{{q}^{2}-2q\cos \left( a \right)+
1}}
$$