3

I need to solve this sum, but unfortunately I have no idea how to start.I would be grateful for every advice.

$$\sum _{n=1}^{\infty }{\left(q\right)^n\left(\sin(na)\right), |q|<1}$$

Many
  • 341

3 Answers3

1

It's the imaginary part of $$\sum_{n=0}^\infty q^n e^{ina}=\frac1{1-qe^{ia}}.$$

Angina Seng
  • 158,341
1

As $\;\sin nt=\operatorname{Im}\mathrm e^{int}$, we have $$\sum _{n=1}^{\infty }(q )^n \sin(na)=\operatorname{Im}\Bigl(\sum _{n=1}^{\infty }(q \mathrm e^{it})^n\Bigr).$$ Also, we have $$\sum _{n=1}^{\infty } z^n=z\sum _{n=0}^{\infty } z^n=\frac z{1-z},\quad |z|<1.$$

Bernard
  • 175,478
1

The complex method is probably the best.
But instead you can: prove by induction on $N$ that $$ \sum _{n=1}^{N}{q}^{n}\sin \left( na \right) ={\frac {{q}^{N+2}\sin \left( Na \right) -{q}^{N+1}\sin \left( \left( N+1 \right) a \right) +q \sin \left( a \right)}{{q}^{2}-2q\cos \left( a \right)+ 1}} $$ and then do the limit easily: $$ \sum _{n=1}^{\infty}{q}^{n}\sin \left( na \right) = {\frac {q \sin \left( a \right)}{{q}^{2}-2q\cos \left( a \right)+ 1}} $$

GEdgar
  • 111,679