How does one evaluate the following improper integral using Leibniz's integration rule?
$$\int^{\frac{\pi}{2}}_{0}x\cot (x)dx$$
I tried to add a new parameter $\ln(\sec(tx))$
$$f(t) = \int^{\frac{\pi}{2}}_{0}x\cot (x)\ln(\sec(tx))dx$$
$$\dfrac{\partial}{\partial t}f(t)= \int^{\frac{\pi}{2}}_{0}x\cot (x) \dfrac{\partial}{\partial t}\biggr (\ln(\sec(tx))\biggr)$$
$$\dfrac{\partial}{\partial t}f(t)= \int^{\frac{\pi}{2}}_{0}x\cot (x) x\tan(tx)dx$$
$$\dfrac{\partial}{\partial t}f(t)= \int^{\frac{\pi}{2}}_{0}x^2\cot (x) \tan(tx)dx$$
When $t = 1$,
$$\dfrac{\partial}{\partial t}f(1)= \int^{\frac{\pi}{2}}_{0}x^2\cot (x) \tan(x)dx = \int^{\frac{\pi}{2}}_{0}x^2dx$$
I could find $f(1)$ from there but I have to find $f(0)$.