For any arbitrary integer $a$, prove that $2 \mid a \left( a+1 \right)$ and $3 \mid a \left( a+1 \right) \left( a+2 \right)$
I know that if $2 \mid a \left( a+1 \right)$ then $a \left( a+1 \right)=2q$; $q \in \mathbb{Z}$.
And if $3 \mid a \left( a+1 \right) \left( a+2 \right)$, then $a \left( a+1 \right) \left( a+2 \right) = 3r$; $r \in \mathbb{Z}$.
But how do I prove that both are true?