I am trying to solve the exercice 1.9 page 173 in Liu's Algebraic Geometry and I cannot find my way in question c).
Let $\mathcal{F}$ be a coherent sheaf on a locally Noetherian scheme $X$. We define the annihilator $Ann(\mathcal{F})$ of $\mathcal{F}$ to be
$$Ann(\mathcal{F})(U) := \{f\in \mathcal{O}_X(U) \ | \ \forall x\in U, \ \forall m_x\in \mathcal{F}_x, f\cdot m_x=0\} $$
for any open set $U\subset X$. (Liu defines it differently, to be the kernel of the sheaf morphism $ \alpha : \mathcal{O}_X\rightarrow \mathcal{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{F})$)
We need to prove that for any affine open set $U$, elements in $Ann(\mathcal{F})(U)$ are the one in $\mathcal{O}_X(U)$ killing global sections of $\mathcal{F}$. Explicitely this means
$$ Ann(\mathcal{F})(U)= \{f\in \mathcal{O}_X(U) \ | \ \forall m\in \mathcal{F}(U), f\cdot m=0\} $$
I can prove that if an element $f\in \mathcal{O}_X(U)$ kills all the germs then using sheaf property it kills the global sections. I am missing the other way, i.e. that if an element $f\in \mathcal{O}_X(U)$ kills all the global sections then it kills all the germs. I guess here comes the coherency of $\mathcal{F}$.
Any idea?