When dealing with infinite product of positive real numbers, it is
always a good ideal to consider the log-transform. Let $f:(-1,1)\rightarrow\mathbb{R}$
be defined by $f(x)=x+\ln(1-x)$, then $f'(x)=-\frac{x}{1-x}$. This
shows that $f$ is strictly increasing on $(-1,0]$ and strictly decreasing
on $[0,1)$. In particular, $f(x)\leq f(0)=0$ for all $x\in(-1,1)$.
That is, $\ln(1-x)\leq-x$, for all $x\in(-1,1)$. We need this fact
at later time.
Let $P_{n}=\prod_{k=1}^{n}\frac{3k+1}{3k+2}$, then we have
\begin{eqnarray*}
\ln P_{n} & = & \sum_{k=1}^{n}\ln\left(1-\frac{1}{3k+2}\right)\\
& \leq & \sum_{k=1}^{n}-\frac{1}{3k+2}.
\end{eqnarray*}
Therefore, $0\leq P_{n}\leq\exp\left(-\sum_{k=1}^{n}\frac{1}{3k+2}\right)$.
Note that $-\sum_{k=1}^{n}\frac{1}{3k+2}\rightarrow-\infty$ as $n\rightarrow\infty$.
Therefore $P_{n}\rightarrow0$ as $n\rightarrow\infty$.