I can't figure out how to solve the infinite sum of
$\sum ^{\infty }_{n=0}\left[( -1)^{n}\right]$
I know that Srinivasa Ramanujan solved it and I couldn't figure it out with Ramanujan's summation. Here's what I tried.
Note: I'm only interested in solving this divergent sum by means of Ramanujan's summation. I know about the other methods, but am unable to solve it with Ramanujan's summation. So here's what I tried
$ \begin{array}{l} \sum ^{\infty }_{n=1}\left[( -1)^{n}\right]\overset{\Re }{=} -\frac{1}{2} +i\int\limits ^{\infty }_{0}\frac{e^{-\pi x} -e^{\pi x}}{e^{2\pi x} -1} dx=-\frac{1}{2} -i\int\limits ^{\infty }_{0}\frac{e^{-\pi x}\left( e^{2\pi x} -1\right)}{e^{2\pi x} -1} dx=-\frac{1}{2} -\frac{i}{\pi }\\ \Longrightarrow \\ \sum ^{\infty }_{n=0}\left[( -1)^{n}\right] =1-\frac{1}{2} -\frac{i}{\pi } =\frac{1}{2} -\frac{i}{\pi } \end{array}$
Which is obviously wrong.
Here are some ideas that were tried though
$\sum ^{\infty }_{n=0}\left[( -1)^{n}\right]$ Has no imaginary part--therefore
$\sum ^{\infty }_{n=0}\left[( -1)^{n}\right] =\frac{1}{2}$
The other idea is
$ \begin{array}{l} \sum\limits ^{\infty }_{n=1} f( n)\overset{\Re }{=} -\frac{f( 0)}{2} +i\int\limits ^{\infty }_{0}\frac{f( ix) -f( -ix)}{e^{2\pi x} -1} dx\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{Grandi's\ series}\\ \sum ^{\infty }_{n=0}( -1)^{n} =1+\sum\limits ^{\infty }_{n=1}( -1)^{n}\overset{\Re }{=}\\ 1-\frac{1}{2} +i\int\limits ^{\infty }_{0}\frac{( -1)^{ix} -( -1)^{-ix}}{e^{2\pi x} -1} dx=\frac{1}{2} +i\int\limits ^{\infty }_{0}\frac{( -1)^{ix} -( -1)^{-ix}}{e^{2\pi x} -1} dx\\ \ ( -1)^{a} =( -1)^{-a} \Longrightarrow \\ \frac{1}{2} +i\int\limits ^{\infty }_{0}\frac{( -1)^{ix} -( -1)^{ix}}{e^{2\pi x} -1} dx=\frac{1}{2} +i\int\limits ^{\infty }_{0} 0dx=\frac{1}{2} \Re \end{array}$
But this shouldn't work because the thing $( -1)^{a} =( -1)^{-a} ,\ a\in \mathbb{Z}$
And $x$ is not an integer , Right? Well, I can't figure this out. Any help is appreciated! Thanks!
Edit:
Actually, I realize that Srinivasa Ramanujan probably did it using the derichlet eta function$\Longrightarrow$
$ \begin{array}{l} \sum ^{\infty }_{n=0}( -1)^{n} =1+\sum ^{\infty }_{n=1}( -1)^{n} =1-\eta ( 0) ,\ \eta ( 0) =-\zeta ( 0) =\frac{1}{2}\\ \boxed{\therefore \sum ^{\infty }_{n=0}( -1)^{n} =\frac{1}{2}} \end{array}$
i/π
. What could be happening here? – blindProgrammer Sep 16 '21 at 22:34