3

Recently, I have found this problem:

Let $Q(n)$ denote the sum of the digits of a positive integer $n$. Prove that: $$Q(Q(Q(2005^{2005})))=7$$

This topic is related to other two question I have asked: Sum of number's digits and Simplifying an expression with modulus.

I have tried to solve this problem in many different ways, for example using the formula: $$Q(n)= n - 9 \sum_{k=1}^{\lfloor\log_{10} n\rfloor}\left\lfloor\frac{n}{10^k}\right\rfloor$$ but I'm stuck when I have to compute: $$Q(2005^{2005} - 9 \sum_{k=1}^{\lfloor\log_{10} 2005^{2005}\rfloor}\left\lfloor\frac{2005^{2005}}{10^k}\right\rfloor)= 2005^{2005} - 9 \sum_{k=1}^{\lfloor\log_{10} 2005^{2005}\rfloor}\left\lfloor\frac{2005^{2005}}{10^k}\right\rfloor- 9 \sum_{k=1}^{\lfloor\log_{10} \left ( 2005^{2005} - 9 \sum_{k=1}^{\lfloor\log_{10} 2005^{2005}\rfloor}\left\lfloor\frac{2005^{2005}}{10^k}\right\rfloor \right )\rfloor}\left\lfloor\frac{2005^{2005} - 9 \sum_{k=1}^{\lfloor\log_{10} 2005^{2005}\rfloor}\left\lfloor\frac{2005^{2005}}{10^k}\right\rfloor}{10^k}\right\rfloor$$

Or in other words, letting: $\Upsilon =2005^{2005} - 9 \sum_{k=1}^{\lfloor\log_{10} 2005^{2005}\rfloor}\left\lfloor\frac{2005^{2005}}{10^k}\right\rfloor $: $$Q(\Upsilon)=\Upsilon-9 \sum_{k=1}^{\lfloor\log_{10} \Upsilon\rfloor}\left\lfloor\frac{\Upsilon}{10^k}\right\rfloor$$

I have tried also using infinite sum, like complex Fourier series (see also this post Expression for finding sum of number's digits), but I don't know how to pass from an infinite series to the effective result.

Matteo
  • 6,581
  • Some similar questions: https://math.stackexchange.com/q/169797/42969, https://math.stackexchange.com/q/2966184/42969, https://math.stackexchange.com/q/1906448/42969 – Martin R Aug 19 '19 at 09:26
  • I strongly assume that the same technique (computing $2005^{2005} \bmod 9$) works here as well (and the question can be closed as a duplicate). – Martin R Aug 19 '19 at 09:36
  • Can you explain how $\mod 9$ can be used? – Matteo Aug 19 '19 at 09:38
  • Did you have a look at the answers to those 3 similar questions? – Martin R Aug 19 '19 at 09:39
  • Hint :$\lceil \log (2005^{2005}) \rceil = \lceil 2005\log (2005) \rceil = 6621$, so $Q(2005^{2005}) \lt 9 \times 6621 = 59589$ etc. – gandalf61 Aug 19 '19 at 13:36

0 Answers0