Name $X=(x,y)$. Then
$$f(x,y)=f(X)= \frac{1}{\Vert X\Vert^2 +1}.$$
Where $\Vert \cdot \Vert$ is the Euclidean norm.
We have
$$\begin{aligned}\vert f(X_1)-f(X_2) \vert &= \left\vert \Vert X_1\Vert - \Vert X_2 \Vert\right\vert \left\vert \frac{\Vert X_1\Vert + \Vert X_2\Vert}{(\Vert X_1\Vert +1)(\Vert X_2\Vert +1)}\right\vert\\
&\le 2\left\vert \Vert X_1\Vert - \Vert X_2 \Vert\right\vert\\
&\le 2\Vert X_1 -X_2 \Vert\end{aligned}$$
as $\frac{\Vert X_i\Vert}{(\Vert X_1\Vert +1)(\Vert X_2\Vert +1)} \le 1$ for $i=1,2$ and using reverse triangle inequality.
Which implies uniform continuity.
Note: we get as a bonus that proof above is valid for any normed space.