As a continuation of the comment I left (using this answer). Using division with remainder, if $n=q_ii+r_i$ s.t. $0\leq r_i < i$, then
$$r_i=n \pmod{i}$$
$$q_i=\left \lfloor \frac{n}{i} \right \rfloor$$
$$r_i=n-i\left \lfloor \frac{n}{i} \right \rfloor$$
Thus,
$$\sum_{i=2}^n i\cdot\left\lfloor\frac ni\right\rfloor=
\sum_{i=2}^n (n-r_i)=
n(n-1)-\sum_{i=2}^n r_i =\\
n(n-1)-\sum_{i=2}^n \left(n \pmod{i}\right)$$
I am not sure what do you mean by "faster", but I presume computing $n \pmod{i}$ is faster than $i \cdot ...$ and $\left\lfloor\frac ni\right\rfloor$.
From the same link, it is relatively easy to see that
$$\sum_{i=1}^n i\cdot\left\lfloor\frac ni\right\rfloor=
n^2-\sum_{i=1}^n \left(n \pmod{i}\right) \sim \\
n^2 - n^2\left(1-\frac{\pi^2}{12}\right)=n^2\frac{\pi^2}{12}$$
as per the link suggested by @Peter.