This is the working to find the gcd using the Euclidean algorithm $$\begin{align}1820 &= 7(231) + 203 & (a) \\ 231 &= 1(203) + 28 &(b)\\ 203 &= 7(28) + 7 &(c)\\ 28 &= 4(7)+0 &(d)\\ \end{align}$$
The last non-zero remainder is 7, so gcd(1820, 231) = 7.
And then to find linear combination m and n:
$$\begin{align} 7 &= 203 − 7(28) &\mathrm{from}\ (c) \\ &= 203 − 7(231 − 203) &\mathrm{from}\ (b) \\ &= (−7)(231) + 8(203) \\ &= (−7)(231) + 8(1820 − 7(231)) &\mathrm{from}\ (a)\\ &= 8(1820) + (−63)(231)\\ \end{align} $$
However I'm confused at the linear combination line where it has = (−7)(231) + 8(203)
. Where did the 8 come from in this line? There was no 8 in the previous line.