Let $a, b, c \in \mathbb{N}$. Show that if $a^2+b^2=c^2$ then $gcd(a,b)=gcd(a,c)=gcd(b,c)$.
Using basic divisibility criteria I couldn't advance anything.
Let $a, b, c \in \mathbb{N}$. Show that if $a^2+b^2=c^2$ then $gcd(a,b)=gcd(a,c)=gcd(b,c)$.
Using basic divisibility criteria I couldn't advance anything.
Hint $\,(a,b)^2\overset{\color{#c00}d}=\, \overbrace{(a^2,b^2) = (a^2,b^2,c^2)}^{\large {\rm by}\ \ c^2\ =\ j\,a^2+k\,b^2}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\underbrace{\phantom{j\,a^k+k\,b^2} = (b^2,c^2)}_{\large{\rm by}\ \ a^2\ =\ m\, b^2 + n\, c^2} \overset{\color{#c00}d} = (b,c)^2\,$ via $\,\color{#c00}d = $gcd Freshman's Dream