3

Let $f\colon[0,1] \rightarrow \mathbb R$ (all real numbers) be defined by $\displaystyle f(x) = x \sin \left(\frac{\pi}{2x}\right)$ if $0 \lt x \le 1$ and $f(x) = 0$ if $x=0$.

Determine whether $f$ is of bounded variation or not.

I've been struggling with this problem and looking for any help. Thanks!

Davide Giraudo
  • 172,925
Drake
  • 851

1 Answers1

1

Fix an integer $N$, and define $x_n:=\frac 1{4n+1}$, $y_n:=\frac 1{4n+3}$. Consider the partition $$0<y_N<x_N<y_{N-1}<x_{N-1}<\dots<y_1<x_1<1.$$ The sum $\sum_k|f(t_k)-f(t_{k-1})|$ for this partition behaves approxitively as $C\log N$, where $C$ is a constant independent of $N$.

Davide Giraudo
  • 172,925