Hint $\bmod 3\!:\ 2^{\large n+2}\equiv 2^{\large n}\Rightarrow\, f(n\!+\!\color{#c00}6)\equiv f(n)$ so we need to test only $\color{#c00}6$ values $\,n = 0,1\,\ldots,5$
Remark $ $ Such $\color{#c00}{\text{periodicity}}$ holds much more generally, e.g. above is the special case of the Lemma below where $\,f(x,y) = xy+1,\ g(x) = 2^{\large x},\, m,n = 2,3$.
Lemma $ $ If $\,f:\Bbb Z^2\to \Bbb Z,\,\ g:\,\Bbb N\to \Bbb Z\,$ and $f$ is a polynomial with integer coef's then
$\!\bmod n\!:\,\ \forall x\in \Bbb N\!:\ g(x\!+\!m)\equiv g(x)\ \Rightarrow\ \forall x\in \Bbb N\!:\ f(x\!+\!\color{#c00}{mn},\,g(x\!+\!\color{#c00}{mn}))\equiv f(x,g(x)) $
Proof $\, \begin{align} x\!+\!mn&\,\equiv\, x\\ g(x\!+\!mn)&\equiv g(x)\end{align}$ $\Rightarrow \begin{align} &\ f(x\!+\!mn,\,g(x\!+\!mn))\\ \equiv\, &\ f(x,\,g(x)) \end{align}$ by the Polynomial Congruence Rule
where $\,\ g(x\!+\!mn)\equiv g(x)\ $ follows from $\,g(x\!+\!m)\equiv g(x)\,$ by induction on $\,n$.
Beware as above $\,g(x)\,$ may not be a polynomial so it needn't satisfy $\,x\equiv y\,\Rightarrow\,g(x)\equiv g(y)$
$n*2^n + 1 ≡ -n + 1 mod 3$ and $n ≡ 1 mod 2$
Does this consolidate to $n ≡ -1 mod 2$ ?
– Aug 15 '19 at 08:11$n ≡ 1 mod 2$ (being odd) $n ≡ 1 mod 3$
Which consolidates to $n ≡ 1 mod 6$
Thanks again!
– Aug 15 '19 at 10:06