You can use the stars and bars method.
Valid sums are: 5,7,11,13,17,19,23,29 (2,3 are not valid since the minimum on five dice is 5)
So, you want:
$$x_1+x_2+x_3+x_4+x_5 = p, \forall i, 1\le x_i \le 6$$
For each of these equations, it corresponds to a similar equation:
$$y_1+y_2+y_3+y_4+y_5 = p-5, \forall i, 0\le y_i \le 5$$
Now, $p=5$ and $p=7$ are easy. There is 1 way to get a sum of 5 and $$\dbinom{2+5-1}{5-1} = \dbinom{6}{4} = 15$$ ways to get 7.
For 11 and above, we need to use Inclusion/Exclusion. We take the total number of solutions of nonnegative integers and subtract the total number of solutions that violate the upper bound for one of the variables.
For $p=11$ we have
$$\dbinom{6+5-1}{5-1} - \dbinom{5}{1}\dbinom{0+5-1}{5-1} = \dbinom{10}{4}-5 = 205$$
For $p=13$, we have
$$\dbinom{8+5-1}{5-1} - \dbinom{5}{1}\dbinom{2+5-1}{5-1} = 420$$
For $p=17, p=19$, we can have two upper bounds violated.
$p=17$:
$$\dbinom{12+5-1}{5-1} - \dbinom{5}{1}\dbinom{6+5-1}{5-1} + \dbinom{5}{2}\dbinom{0+5-1}{5-1} = 780$$
$p=19$:
$$\dbinom{14+5-1}{5-1} - \dbinom{5}{1}\dbinom{8+5-1}{5-1} + \dbinom{5}{2}\dbinom{2+5-1}{5-1} = 735$$
For $p=23$, we can violate 3 of the upper bounds:
$$\dbinom{18+5-1}{5-1} - \dbinom{5}{1}\dbinom{12+5-1}{5-1} + \dbinom{5}{2}\dbinom{6+5-1}{5-1} - \dbinom{5}{3}\dbinom{0+5-1}{5-1} = 305$$
For $p=29$, we can violate 4 of the upper bounds:
$$\dbinom{24+5-1}{5-1} - \dbinom{5}{1}\dbinom{18+5-1}{5-1} + \dbinom{5}{2}\dbinom{12+5-1}{5-1} - \dbinom{5}{3}\dbinom{6+5-1}{5-1} + \dbinom{5}{4}\dbinom{0+5-1}{5-1} = 5$$
Total number of ways to yield a prime:
$$1+15+205+420+780+735+305+5 = 2466$$
Total probability:
$$\dfrac{2466}{6^5} = \dfrac{137}{432}$$